• Title/Summary/Keyword: early plant

Search Result 2,378, Processing Time 0.029 seconds

Changes in Ion Balance and Individual Ionic Contributions to EC Reading at Different Renewal Intervals of Nutrient Solution under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Peppers (Capsicum annum L. 'Fiesta') (EC 기준 파프리카 순환식 수경재배에서 양액 교체 주기에 따른 양액 중의 이온 균형 및 각 이온의 EC 기여도 변화)

  • Ahn, Tae-In;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • Individual ion concentrations and ionic contributions to EC reading in the circulated nutrient solution are the important factors to be considered for stable EC-based closed-loop soilless culture. This study was conducted to determine appropriate ion-analysis intervals of the circulated nutrient solutions based on ion concentration, ion balance, and ion electrical conductivity under different renewal intervals in EC-based nutrient control systems for sweet peppers (Capsicum annum L. 'Fiesta') in early growth stage. Average node numbers of the plants were 13 and 18 when the experiment started and finished, respectively, and three plants were grown in each rockwool slab. Four different renewal intervals of circulated nutrient solutions such as 1, 2, 3, and 4 weeks were used as treatment. Nutrient solutions were supplied to the plants based on integrated radiation. Drainage was collected into drain tanks after irrigation ended in the day and then mixed with fresh water until the EC reaches 2.69 $dS{\cdot}m^{-1}$. The replenished nutrient solution was supplied to the plants in the next day. Ion concentrations of the individual ions periodically analyzed in the circulated nutrient solutions showed no significant differences among the treatments during the experimental period. Ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $NO_3{^-}$, ${SO_4}^{2-}$, ${PO_4}^{3-}$, and $Cl^-$ varied within 5-8, 11-14, 2.0-2.7, 0.5-0.6, 14-19, 4-5, 1-4, and 0.3-0.5 $meq{\cdot}L^{-1}$, respectively. Ion balance showed a consistent tendency over all the treatments and especially $K^+$ : $Ca^{2+}$ and ${SO_4}^{2-}$ : ${PO_4}^{3-}$ played great roles in the cation and anion balances in the nutrient solutions, respectively. Activity coefficients of ions such as $K^+$, $NO_3{^-}$, and $H_2PO_4{^-}$ varied within 0.8-0.9 and those of $Ca^{2+}$, $Mg^{2+}$, ${SO_4}^{2-}$ varied within 0.5-0.6, showing little changes with time. Ionic contributions of $K^+$ and $NO_3{^-}$ to EC reading were the greatest followed by $Ca^{2+}$, ${SO_4}^{2-}$, and $Mg^{2+}$ in the order. From the results, we thought that allowable ranges in ion concentration, ion balance, and subsequent individual ionic contributions to EC reading would be obtained within 4-week renewal interval of nutrient solution in EC-based closed-loop soilless culture for sweet pepper plants.

Genetic Identification and Phylogenic Analysis of New Varieties and 149 Korean Cultivars using 27 InDel Markers Selected from Dense Variation Blocks in Soybean (Glycine max (L.) Merrill) (변이밀집영역 유래 27개 InDel 마커를 이용한 콩(Glycine max (L.) Merrill) 신품종 판별 및 국내 149 품종과 유연관계 분석)

  • Chun, JaeBuhm;Jin, Mina;Jeong, Namhee;Cho, Chuloh;Seo, Mi-Suk;Choi, Man-Soo;Kim, Dool-Yi;Sohn, Hwang-Bae;Kim, Yul-Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.519-542
    • /
    • 2019
  • Twenty soybean cultivars developed recently were assessed using 27 insertion and deletion (InDel) markers derived from dense variation blocks (dVBs) of soybean genome. The objective of this study is to identify the distinctness and genetic relationships among a total of 169 soybean accessions including new cultivars. The genetic homology between 149 accessions in the soybean barcode system and 20 new cultivars was 61.3% on average with the range from 25.9% to 96.3%, demonstrating the versatile application of these markers for cultivars identification. The phylogenic analysis revealed four subgroups related to their usage. The 80% of cultivars for vegetable and early maturity and the 65.9% of cultivars for bean sprouts were clustered in subgroup I-2 and II-2, respectively, indicating of the limited gene pools of their crossing parents in breeding. On the other hands, the cultivars for soy sauce and tofu with considerable gene flow by genome reshuffling were distributed evenly to several subgroups, I-1 (44.4%), I-2 (26.4%) and II-2 (23.6%). We believe that the 27 InDel markers specific to dVBs can be used not only for cultivar identification and genetic diversity, but also in breeding purposes such as introduction of genetic resources and selection of breeding lines with target traits.

Effects of Application Method of Pig Compost and Liquid Pig Manure on Yield of Whole Crop Barley (Hordeum vulgare L.) and Chemical Properties of Soil in Gyehwa Reclaimed Land (계화간척지에서 돈분뇨 퇴.액비 시용이 청보리 (Hordeum vulgare L.) 수량 및 토양화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Lee, Jung-Jun;Oh, Young-Jin;Park, Tail-Il;Kim, Kee-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.353-360
    • /
    • 2011
  • In order to develop the application method of pig compost (PC) and liquid manure (LM) for whole crop barley cultivation, experiments were conducted at Munpo series (coarse loamy, mixed, nonacid, mesic family of Typic Fluvaquents) soil in Gyehwa-reclaimed land, six plots, a LM applied rate as N% ; non-application, chemical fertilizer (CF)100, 100, 50+50, 50+CF50 and (PC30+LM40)+LM50 as basal and additional fertilizer. $NO_3^-$-N content in soil was decreased as along with the growth of plant, highest in LM100% as basal fertilization at early growth stage and highest in (PC30%+LM40%)+LM40% and CF100% at last growth stage. Amount of $NO_3^-$-N and $NH_4^+$-N in soil was high in (PC30%+LM40%)+LM40% and CF100% of top soil but in subsoil significant difference was little in all treatment. Amount of OM, $A_V.P_2O_5$, T-N, exchangeable Ca and Na in soil was higher (PC30%+LM40%)+LM40% than non-application after harvest. Amount of nutrient uptake in plant was higher in CF100% and split application of LM than LM 100% application. Nitrogen utilization rate was in the order of CF100% >LM50%+LM50%=LM50%+CF50%>(PC30%+LM40%)+LM40% >LM100%. The yield of whole crop barley in (PC30%+LM40%)+LM40% and CF100% was 3.2 times more than in non-application ($309kg\;10a^{-1}$). Feed values such as crude protein and TDN was increased 1.0% ~ 1.4% in LM as split application than basal 100% treatment. Accordingly, in order to increase yield of a whole crop barley with application PC+LM in reclaimed land treat split application rather than to treat LM 100% into the land.

Evaluation of Surface Covering Methods for Reducing Soil Loss of Highland Slope in Radish Cultivation (고랭지 경사 밭 무 재배지에서 토양유실경감을 위한 피복방법 평가)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Park, Suk-Hoo;Han, Kyung-Hwa;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.667-673
    • /
    • 2011
  • There is relatively high vulnerability of soil erosion in slope highland agriculture due to a reclamation of mountain as well as low surface covering in early summer season with high rainfall intensity time. The aim of this study was to evaluate various surface covering methods for reducing soil loss in highland radish cultivation in highland. The experiment was conducted in 17% sloped lysimeter ($2.5m{\times}13.4m$) with 8 treatments including covering with cut rye, sod culture of rye, Ligularia fischeri var. spiciformis Nakai, Arachniodes aristata Tindale, Aster koraiensis Nakai, Festuca myuros L. and mulching with black polyethylene film, and runoff water, eroded soil and radish growth were investigated. Surface covering with sod culture and plant residue, especially cut rye treatment, had lower runoff water than non-covering, whereas black polyethylene film mulching had the reverse. The amount of eroded soil was also lowest in cut rye treatment, $0.3Mg\;ha^{-1}$, and increased in the order of rye sod culture, Ligularia fischeri var. spiciformis Nakai, Aster koraiensis Nakai, Festuca myuros L., Arachniodes aristata Tindale, black polyethylene film, and non-covering, $68.2Mg\;ha^{-1}$. The results showed that surface covering with sod culture or plant residue could be effective for reducing runoff water and soil erosion in the radish field, significantly in cut rye treatment. On the other hand, in sod culture of rye, Aster koraiensis Nakai and Ligularia fischeri var. spiciformis Nakai, radish yields were lower than in the non-covering. Unlike this, covering with cut rye, sod culture of Festuca myuros L. had similar radish yield to the non-covering radish yield. In conclusion, covering with cut rye and sod culture of Festuca myuros L. were beneficial for reduction of soil loss without decreasing in radish yield in highland sloped fields.

Seedling Quality, and Early Growth and Fruit Productivity after Transplanting of Squash as Affected by Plug Cell Size and Seedling Raising Period (플러그 셀 크기와 육묘일수에 따른 애호박의 묘 소질, 정식 후 초기 생육 및 과실 생산성)

  • Kim, Yeong Sook;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • Abstract. This research was conducted to figure out the optimal size of the plug cell and seedling raising period in 'Nongwoo' and 'Nonghyeop' cultivars. In the first experiment on effect of plug cell size on growth of squash, seedlings were transplanted into hydroponic cultivation beds at different growing stages: Those in 32-cell trays with 3-4 true leaves at 25 days after sowing, those in 50-cell trays with 2 true leaves at 15 days after sowing, those in 105-cell trays just before a true leaf development, and those in 162-cell trays with only cotyledons at 8 days after sowing. In the second experiment on effect of seedling raising period on growth of squash, it was conducted to have different sowing dates. But the same transplanting date, based on the results of Experiment 1, and compared the differences in growth and fruit productivity as affected by plug cell size in the same way with experiment 1 including the cultivars and environmental conditions. After setting the transplanting date in advance, the number of days for sowing were calculated back for each treatment. In the first experiment, plant height was the greatest in 105-cell trays followed by 162, 50 and 32-cell trays in both cultivars. The best fruit quality was found in different treatments depending on the cultivars, although it was the lowest in 32-cell trays in both cultivars. The fruit quality was not significantly different among those from cell sizes. Therefore, when raising seedlings in 105-cell trays, the period of raising seedlings can be shortened as compared with the conventional 32-cell trays, and this change could reduce the workforce required for growing and transplanting seedlings. In the second experiment, after transplanting, shoot height and leaf width in the first measurement in both cultivars were greater in the 32-cell treatment. However, the last measurement after four weeks showed no significant difference in plant height, but significantly greatest leaf width in the smallest cell treatment, even as compared with that in 32-cell treatment. In case of 'Nongwoo', length and weight of the first harvested fruit showed the highest values in the treatment of 105-cell trays. In case of 'Nonghyeop' the 162-cell treatment along with the 105-cell treatment showed greatest length and weight of the first fruits. From these results, zucchini plug seedlings can be raised in plug trays with reduced cell sizes than the conventional 32-cell trays with improved fruit productivity.

Differences in Seed Vigor, Early Growth, and Secondary Compounds in Hulled and Dehulled Barley, Malting Barley, and Naked Oat Collected from Various Areas (맥종별 주산지와 재배한계지 수집종자의 활력, 초기생장 및 이차화합물 차이)

  • Park, Hyung Hwa;Kuk, Yong In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.171-181
    • /
    • 2021
  • The purposes of this study were to determine how changes in temperature affect germination rates and growth of hulled and dehulled barley, malting barley, and naked oat plants, and to measure chlorophyll content, photosynthetic efficiency, and secondary compounds (total phenol, total flavonoid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) in plants grown at 13℃ or 25℃). Various types of barley seeds were collected from areas with ideal conditions for barley cultivation, hereinafter referred to as IA, and also from areas where barley cultivation is more difficult due to lower temperatures, hereinafter referred to as LTA. Seeds were tested for seed vigor. While there were significant differences in the electrical conductivity values between seeds collected from certain specific areas, no significant differences were evident between IA and LTA seeds, regardless of the type of barley seed. When plants were grown at 25℃, there were no significant differences in germination rates, plant height, root length and shoot fresh weight between plants originating from IA and LTA. However, there were differences in the measured parameters of some specific seeds. Similarly, under the low temperature condition of 13℃, no differences in the emergence rate, plant height, and shoot fresh weight were evident between plants originating from IA or LTA, regardless of the type of barley. However, there were differences between some specific seeds. One parameter that did vary significantly was the emergence date. Hulled barley and malting barley emerged 5 days after sowing, whereas naked oats emerged 7 days after sowing. There were no differences in the chlorophyll content and photosynthetic efficacy, regardless of the type of barley. There were no significant differences in total phenol, total flavonoid content, and DPPH radical scavenging activity between plants originating from IA and LTA, regardless of the type of barley. However, there were differences between some specific seeds. In particular, for malting barley the total flavonoid content differed in the order of Gangjin > Changwon > Haenam = Jeonju > Naju. The results indicate that crop growth, yield and content of secondary compounds in various types of barley may be affected by climate change.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.

Spatial Distribution and Successional Changes of Riparian Vegetation on Sandbars Exposed after Watergate-Opening of Weirs in the Geumgang River, South Korea (보 개방 후 노출된 금강 모래톱에서 하천 식생의 공간 분포와 천이)

  • Lee, Cheolho;Kim, Hwirae;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.194-205
    • /
    • 2022
  • Sandbars formed by sediment transportation and sedimentation are some of the most important habitats for specific wildlife and they provide an aesthetic landscape in streams. The purpose of this study was to understand the successional process of the colonization and development of early vegetation over time on sandbars exposed by the opening of a gate at a downstream weir. We selected the following four study sites in the Geumgang River, South Korea: three weir-upstream sites with different gate-opening times and a control site that was not affected by weir operation. Changes in the structural characteristics and spatial distribution of the riparian vegetation on the sandbars exposed after opening the gate at the weir were surveyed according to the different exposure periods of the sandbars at the study sites. The newly formed sandbars accounted for more than 33% of the area of the existing floodplain in the three weir-upstream sites of the Geumgang River after opening the gate at the weir. Nine main plant communities were distributed on the exposed sandbars. These communities were classified as annual mesophytic, perennial hydrophytic, perennial hygrophytic, subtree, and tree vegetation based on their species traits. As the duration of exposure of the sandbar increased, the area of the bare sandbar and the annual herbaceous and perennial hydrophytic communities decreased, and the areas occupied by perennial hygrophytic, subtree, and tree communities increased. Changes in vegetation on the sandbar were classified into three types of succession according to the condition of the aquatic habitat before the gate-opening and the degree of physical disturbance caused by the water flow after the gate-opening. The types of succession were: 1) succession starting from hydrophytes in the lentic aquatic zone, 2) succession starting from annual herbaceous hygrophytes in the lotic aquatic zone, and 3) willow-dominated succession in the disturbed channel side. Our results suggested that the dynamics of successional changes in vegetation should be considered during weir operation to ecologically manage the habitats and landscape of the fluvial landforms, including sandbars in streams.

Studies on the Flowering and Maturity in Sesame 1. Flowering Habit by Different Plant Types (참깨 개화, 등숙에 관한 연구 -제 1 보 참깨 초형에 따른 개화특성에 관한 연구-)

  • Lee, J.I.;Kang, C.W.;Lee, S.T.;Son, E.R.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 1984
  • This experiment was performed to investigate the flowering habit of sesame (Sesamum indicum L.). Sesame varieties tested could be classified into 8 different plant types by their morphological traits such as capsule shape, capsule setting habit and branching types among sesame gene pool of Crop Experiment Station, ORD. The first flower was appeared at the lowest node on main stem. Flowers were appeared progressively toward the tip of the main stem and also toward the tips of branches. The interval of flowering for a node was about one day, but 3 to 8 days for the flowers on the tips. Side flowers started at 4 to 5 nodes lower than those of center flower at the same day. Flowers were beared 2 by 1 node on the middle part of flower setting node (7-9) in mono capsule setting habit in spite of its normal is 1 by 1 node on the other nodes. Flowers were beared opposite direction on each node of stem and flowering toward the tip of main stem composed of cross shape between nodes and spiral, reverse of clockwise direction. We called this habit as cross spiral flowering order and cross spiral phyllotaxis. The first flower on branches was appeared when center flower on the 5th node of main stem began to flower. The branches produced at higher nodes on main stem showed larger flowering periods and more number of flowers than that at lower parts. BTB (Branch, Tricapsule, Bicarpels, 4 Loculi) type showed three capsule setting habits and same flowering period both on main stem and branches while BTQ (Branch, Tricapsule, Quadricarpels, 8 Loculi) type showed three capsule setting habit on main stem and mono-capsule setting habit on branches. In BTQ type, the period of flowering was much shorter on branches than on main stem. Branching type was considered more promising than non branching type for the breeding of early maturing high yielding variety because branching type has the advantage of bearing a lot of flowers in comparatively short flowering period.

  • PDF

Evaluation Antioxidant and Anti-inflammatory Activity of Ethanolic Extracts of Myriophyllum spicatum L. in Lipopolysaccharide-stimulated RAW 264.7 Cells (이삭물수세미(Myriophyllum spicatum L.) 에탄올 추출물의 항산화와 항염증 효과)

  • Chul Hwan Kim;Young-Kyung Lee;Min Jin Kim;Ji Su Choi;Buyng Su Hwang;Pyo Yun Cho;Young Jun Kim;Yong Tae Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Myriophyllum spicatum L. has been used as an ornamental in ponds and aquariums, and as a folk remedy for inflammation and pus. Nevertheless, the biological activity and underlying mechanisms of anti-inflammatory effects are unclear. This study is aimed at investigating the antioxidative and anti-inflammatory activities of ethanol extract of Myriophyllum spicatum L. (EMS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Antioxidant activity of EMS was assessed by radical-scavenging effects on ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. As inflammatory response parameters produced by LPS-stimulated RAW 264.7 cells were quantified to assess the anti-inflammatory activity of EMS. Our results showed that EMS increased FRAP and DPPH radical-scavenging activity. In EMS-treated RAW 264.7 cells, the production of NO, PGE2, TNF-α and IL-1β was significantly inhibited at the non-cytotoxic concentration. In addition, EMS significantly attenuated LPS-stimulated the toll-like receptor (TLR) 4/myeloid differentiation protein (MyD) 88 signaling pathway, and inhibited nuclear translocation of nuclear factor-kappa B(NF-κB). Positive correlations were noted between anti-inflammatory activity and antioxidant activity. In conclusion, it was indicated that EMS suppresses the transcription of inflammatory factors by inhibiting the TLR4/MyD88/NF-κB signaling pathway, thereby suppressing LPS-stimulated inflammation in RAW 264.7 cells. This study highlights the potential role of EMS against inflammation and associated diseases.