• Title/Summary/Keyword: early lava effusion

Search Result 4, Processing Time 0.022 seconds

The Study on Geology and Volcanism in Jeju Island (III): Early Lava Effusion Records in Jeju Island on the Basis of $^{40}Ar/^{39}Ar$ Absolute Ages of Lava Samples (제주도의 지질과 화산활동에 관한 연구 (III): $^{40}Ar/^{39}Ar$ 절대연대자료에 근거한 제주도 형성 초기 용암 분출 기록)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • We report twenty data for early lavas erupted during the initial period of formation of Jeju Island on the basis of review on 539 data of whole-rock greochemistry and $^{40}Ar/^{39}Ar$ age dating out of mainly core samples from 69 boreholes drilled in the lower land since 2001 and 66 outcrop sites. Out of 69 boreholes, the early lava flow units are identified from samples collected from Beophocheon (EL 235 m, 210 m deep), Donnaeko (EL 240 m, 230 deep), Donghong-S (EL 187 m, 340 m deep), 05Donghong (EL. 187.6 m, 340 m deep), Dosoon (EL 305 m, 287 m deep), Sangye (EL 230 m, 260 m deep), Mureung-1 (EL 10.2 m, 160 m deep), and Gapa (EL 17.5 m, 92 m deep), which are located in the southern and southwestern portion of Jeju Island. While, the well-known outcrops from Sanbangsan, Wolrabong, Wonmansa, and Kagsubawi are also reconfirmed. $^{40}Ar/^{39}Ar$ age dating results of these lavas range from 1 Ma to 0.7 Ma, indicating that the data can be useful to constrain on age and geochemical characteristics of early lava effusion period in the formation of Jeju Island. Especially, samples with trachybasalt in composition collected from 143 m to 137 m, and from 135 m to 123 m below ground surface at 05Donghong hole have the oldest ages, $992\pm21$ Ka and $988\pm38$ Ka, respectively. This study suggests that in Jeju Island the first lava with trachybasalt in composition may have effused around 1 Ma ago, and the effusion style and chemical compositions of lavas must have changed to the formation of lava domes with trachyte-trachyandesite-basaltic trachyandesite and the eruption of lavas with alkali basalt and trachybasalt intermittently during the period from 0.9 Ma to 0.7 Ma ago. It also indicates that the initial lava flows below the ground are intercalated with or underlain by the Seoguipo Formation except for several exposed domal structure areas such as Sanbangsan and Kagsubawi, implying that the early lava effusion may have intermittently and sporadically occurred with nearby hydrovolcanism and sedimentation.

One-cyclic Volcanic Processes at Udo Crater, Korea (우도(牛島) 분화구(噴火口)에서의 일윤회(一輪廻) 화산과정(火山過程))

  • Hwang, Sang Koo
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Udo Island, some 3 km off the coast of Sungsan Peninsula at the eastern promontory of Cheju Island, occurs in such a regular pattern on the sequences which reprent an excellent example of an eruptive cycle. The island comprises a horseshoe-shaped tuff cone, a nested cinder cone on the crater floor, and a lava delta which extends over northwest from the moat between two cones. The volcanic sequences suggest volcanic processes that start with emergent Surtseyan eruption, progress through Strombolian eruption and end with lava effusion followed by reworking of smooth tephra on the tuff cone. Eruptive environment and hydrology of vent area in the Udo tuff cone are poorly constrained because the stratigraphic units under the tuff cone are unknown. It is thoughl, however, that the tuff cone could be mainly emergent because the present cone deposits show no evidence of marine reworking, and standing body of sea water could play a great role. The emergent volcano is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and a highly mobile slurry. The sea water gets into the vent by flooding accross or through the top or breach of tephra cone. Udo tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting activities in the early stage, late interspersed with continuous uprush activities and proceeded to only continuous uprush activities in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the Surtseyan eruption ceased to transmit into Strombolian activities, which constructed a cinder cone on the crater floor of the tuff cone. The Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the case of Udo, the last magmatic activity was Hawaiian-type (and/or fountain) which accumulated basalt lava delta. And then the loose tephra of the tuff cone reworked over the moat lava and the northeastern flank.

  • PDF

Volcanological History of the Baengnokdam Summit Crater Area, Mt. Halla in Jeju Island, Korea (제주도 한라산 백록담 일대의 화산활동사)

  • Ahn, Ung San;Hong, Sei Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.221-234
    • /
    • 2017
  • The Baengnokdam, the summit crater of Mt. Halla, is one of the representative geosites of World Natural Heritage and Global Geopark in Jeju Island. The crater is marked by two distinctive volcanic lithofacies that comprise: 1) a trachytic lava dome to the west of the crater and 2) trachybasaltic lava flow units covering the gentle eastern slope of the mountain. This study focuses on understanding the formative process of this peculiar volcanic lithofacies association at the summit of Mt. Halla through field observation and optically stimulated luminescence (OSL) dating of the sediments underlying the craterforming volcanics. The trachyte dome to the west of the crater is subdivided into 3 facies units that include: 1) the trachyte breccias originating from initial dome collapse, 2) the trachyte lava-flow unit and 3) the domal main body. On the other side, the trachybasalt is subdivided into 2 facies units that include: 1) the spatter and scoria deposit from the early explosive eruption and 2) lava-flow unit from the later effusion eruption. Quartz OSL dating on the sediments underlying the trachyte breccias and the trachybasaltic lava-flow unit reveals ages of ca. 37 ka and ca. 21 ka, respectively. The results point toward that the Baengnokdam summit crater was formed by eruption of trachybasaltic magma at about 19~21 ka after the trachyte dome formed later than 37 ka.

Volcanic Processes of Dangsanbong Volcano, Cheju Island (제주도 당산봉 화산의 화산과정)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Dangsanbong volcano, which is located on the coast of the western promontory of Cheju Island, occurs in such a regular pattern on the sequences which represent an excellent example of an eruptive cycle. The volcano comprises a horseshoe-shaped tuff cone and a younger nested cinder cone on the crater floor, which are overlain by a lava cap at the top of the cinder cone, and wide lava plateau in the moat between two cones and in the northern part. The volcanic sequences suggest volcanic processes that start with Surtseyan eruption, progress through Strombolian eruption and end with Hawaiian eruption, and then are followed by rock fall from sea cliff of the tuff cone and by air fall from another crater. It is thought that the eruptive environments of the tuff cone could be mainly emergent because the present cone is located on the coast, and standing body of sea water could play a great role. It is thought that the now emergent part of the tuff cone was costructed subaerially because there is no evidence of marine reworking. The emergent tuff cone is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and external water. The sea water gets into the vent by flooding accross or through the top or breach of northern tephra cone. Dangsanbong tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting explosion in the early stage, late interspersed with continuous upruch activities, and from ultra-Surtseyan jetting explosions producting base surges in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the phreatomagmatic activities ceased to transmit into magmatic activity of Strombolian eruption, which constructed a cinder cone on the crater floor of the tuff cone Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the Dangsanbong volcano, the last magmatic activity was Hawaiian eruption which went into with foundation and effusion of basalt lava.

  • PDF