• 제목/요약/키워드: early gene

검색결과 1,296건 처리시간 0.031초

Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo;Song Dae-Hae
    • 한국작물학회지
    • /
    • 제49권5호
    • /
    • pp.434-439
    • /
    • 2004
  • Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

BRCA1 Gene Exon 11 Mutations in Uighur and Han Women with Early-onset Sporadic Breast Cancer in the Northwest Region of China

  • Cao, Yu-Wen;Fu, Xin-Ge;Wan, Guo-Xing;Yu, Shi-Ying;Cui, Xiao-Bin;Li, Li;Jiang, Jin-Fang;Zheng, Yu-Qin;Zhang, Wen-Jie;Li, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4513-4518
    • /
    • 2014
  • The prevalence of BRCA1 gene mutations in breast cancer differs between diverse ethnic groups. Relatively little information is known about patterns of BRCA1 mutations in early-onset breast cancer in women of Uighur or Han descent, the major ethnic populations of the Xinjiang region in China. The aim of this study was to identify BRCA1 mutations in Uighur and Han patients with early-onset (age <35 years), and sporadic breast cancer for genetic predisposition to breast cancer. For detection of BRCA1 mutations, we used a polymerase chain reaction single-stranded conformation polymorphism approach, followed by direct DNA sequencing in 22 Uighur and 13 Han women with early-onset sporadic breast cancer, and 32 women with benign breast diseases. The prevalence of BRCA1 mutations in this population was 22.9% (8/35) among early-onset sporadic breast cancer cases. Of these, 31.8% (7/22) of Uighur patients and 7.69% (1/13) of Han patients were found to have BRCA1 mutations. In 7 Uighur patients with BRCA1 mutations, there were 11 unique sequence alterations in the BRCA1 gene, including 4 clearly disease-associated mutations on exon 11 and 3 variants of uncertain clinical significance on exon 11, meanwhile 4 neutral variants on intron 20 or 2. None of the 11 BRCA1 mutations identified have been previously reported in the Breast Cancer Information Core database. These findings reflect the prevalence of BRCA1 mutations in Uighur women with early-onset and sporadic breast cancer, which will allow for provision of appropriate genetic counseling and treatment for Uighur patients in the Xinjiang region.

Mutation in the rpoB Gene of Mycobacterium leprae from Korean Laprosy Patients

  • Kim, Soon-Ok;chae, Gue-Tae;Shin, Hang-Kye;Kim, Nan-Hee;Lee, In-Hyung;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.287-293
    • /
    • 2001
  • A fast and easy PCR-SSCP method was developed and assessed for the early detection of rifampin-resistant Mycobacterium leprae in skin biopsy samples from Korean leprosy patients. The 190 bp of the rpoB gene, in which mutation is known to cause resistance to rifampin, was amplified by PCR and then analyzed by SSCP and DNA sequencing, All PCR products showing mobility shift on PCR-SSCP contained mutations, demonstrating that this method can be used for an early diagnositic method to detect a putative rifampin-resistant M. leprae strain. DNA sequence analysis revealed that 19 of 34 patient samples contained M. leprae strains with missense mutations in the rpoB gene: five were the same mutations previously reported to cause rifampin resistance and eight were the new type of mutatios that likely cause rifampin resistance. These newly identified dmutations, whose all five cytosine bases of four amino acids were substitued with thymine, were found at different sites from those reported in Mycobacterium tuberculosis or M. leprae. Therefore, they may provide additional clues to understand the molecular biological basis on the rifampin resistance of M. leprae.

  • PDF

Amperozide Decreases Cocaine-Induced Increase in Behavior and Immediate Early Gene Expression in the Dorsal Striatum

  • Choe, Eun-Sang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.361-367
    • /
    • 2000
  • Cocaine functions as indirect dopamine and serotonin (5-hydroxytryptamine, 5HT) agonists and induces genomic and behavioral alterations in the striatum. Previously we demonstrated that ritanserin, a 5HT2/1C receptor antagonist, is not responsible for cocaine-induced behavioral alterations and zif268 mRNA gene expression in the striatum (see the previous paper in this issue). In this study, it was hypothesized that dopamine and 5HT2/1C receptors are required for cocaine-induced behavioral alterations and c-fos and zif268 mRNA expression. This hypothesis was addressed by infusing amperozide which antagonizes both 5HT2/1C and dopamine receptors and was analyzed using the quantitative in situ hybridization histochemistry in vivo. Systemic injection of amperozide (5 mg/kg, s.c.) significantly blocked increase in behavior, c-fos and zif268 mRNA expression induced by 15 mg/kg cocaine, i.p., in the dorsal striatum. These data suggest that dopamine and 5HT2/1C receptors are necessary for cocaine-induced behavioral alterations and immediate early gene expression in the dorsal striatum.

  • PDF

Gene Expression of Taurine Transporter and Taurine Biosynthetic Enzyme During Embryonic Development

  • Yoon, Seyng-Hyun;Kim, Ha-Won
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.87-87
    • /
    • 2003
  • Taurine (2-aminoethanesulfonic acid, $^{+}NH_3CH_2CH_2{SO_3}^{-}$) is endogenous $\beta$-amino acid which is essential in fetal nutrition and development and is present in abundant quantities in several tissues of fetus. In utero, taurine deficiency causes abnormal development and abnormal function of brain, retina, kidney and myocardium. Thus, transfer of taurine into fetus is important during embryonic development. Taurine transporter (TauT) has 12 hydrophobic membrane -spanning domains, which is typical of the $Na^{+}$- and $Cl^{-}$-dependent transporter gene family. Among the various biosynthetic enzymes of taurine, cysteine sulfinic acid decarboxylase (CSD) is the rate-limiting enzyme for biosynthesis of taurine. However, the enzyme activities of taurine biosynthesis are limited in early stage of embryonic development. To analyze the expression period of TauT and CSD during embryonic development, we have investigated the gene expression of TauT and CSD using reverse transcriptase polymerase chain reaction (RT-PCR) in mouse and chicken embryos. RT-PCR anaylsis revealed that both TauT and CSD mRNAs were already expressed at Day-4.5 in mouse embryo. In chicken whole embryo, TauT and CSD mRNAs began to appear on developing times of 48 hrs and 12 hrs, respectively. TauT mRNA was detected in the organs of heart, brain and eye of the day-3 chicken embryo. Our data show that TauT and CSD mRNAs were expressed in early stage of embryonic development.

  • PDF

SMALL AUXIN UP RNA 유전자 집단의 기능과 조절 메커니즘에 대한 최근 연구 동향 (Recent research progress on the functional roles and regulatory mechanisms of SMALL AUXIN UP RNA gene family)

  • 이상호
    • Journal of Plant Biotechnology
    • /
    • 제45권3호
    • /
    • pp.183-189
    • /
    • 2018
  • The plant hormone auxin regulates the overall metabolic processes essential for plant growth and development. Auxin signaling is mediated by early auxin response genes, which are classified into three major families: AUXIN/INDOLE ACETIC ACID (AUX/IAA), GRETCHEN HAGEN3 (GH3) and SMALL AUIN UP RNA (SAUR). The SAUR gene family is the largest family among early auxin response genes and encodes the small and highly unstable gene products. The functional roles of SAUR genes have remained unclear for many years. The traditional genetic and molecular studies on the SAUR functions have been hampered by their likely genetic redundancy and tandem arrays of highly related genes in the plant genome, together with the molecular characteristics of SAUR. However, recent studies have suggested possible roles of SAUR in a variety of tissues and developmental stages in accordance with the novel approaches such as gain-of-function and RNA silencing techniques. In this review, the recent research progress on the functional roles and regulatory mechanisms of SAUR and a set of possible future works are discussed.

Signal transfduction pathways for infection structure formation in the rice blast fungus, Magnaporthe grisea

  • Lee, Yong-Hwan;Khang, Chang-Hyun
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.41-44
    • /
    • 1999
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

북한산 국립공원의 식물상

  • 이영노
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1985년도 워크샵 및 심포지엄 북한산국립공원의 식생
    • /
    • pp.19-22
    • /
    • 1985
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

Zinc modulation of osterix in MC3T3-E1 cells

  • Seo, Hyun-Ju;Jeong, Jin Boo;Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • 제53권4호
    • /
    • pp.347-355
    • /
    • 2020
  • Purpose: Zinc is known to be associated with osteoblast proliferation and differentiation. Osterix as zinc-finger transcription factor is also related to osteoblast differentiation and bone formation. In the present study, we aimed to investigate whether zinc modulates osterix gene and protein expression in osteoblastic MC3T3-E1 cells. Methods: MC3T3-E1 cells were cultured in zinc-dependent concentrations (0, 0.5, 1, 5, or 15 µM Zn), along with osteogenic control (normal osteogenic medium) for 1 and 3 days. The gene and protein expression levels of osterix were analyzed by real-time reverse transcription polymerase chain reaction and Western blotting, respectively. Results: Zinc increased osteoblast proliferation in a concentration-dependent manner at day 1 and 3. Similarly, zinc increased the activity of osteoblast marker enzyme alkaline phosphatase in cells and media in a zinc concentration-dependent manner. Moreover, our results showed that the pattern of osterix gene expression by zinc was down-regulated within the low levels of zinc treatments (0.5-1 µM) at day 1, but it was up-regulated after extended culture period at day 3. Osterix protein expression by zinc showed the similar pattern of gene expression, which down-regulated by low zinc levels at day 1 and up-regulated back at day 3 as the early stage of osteoblast differentiation. Conclusion: Our results suggest that zinc modulates osterix gene and protein expression in osteoblasts, particularly in low level of zinc at early stage of osteoblast differentiation period.

Agronomic characteristics of stay-green mutant derived from an early-maturing rice variety 'Pyeongwon'

  • Won, Yong-Jae;Ji, Hyeon-So;Ahn, Eok-Keun;Lee, Jeong-Heui;Jung, Kuk-Hyun;Lee, Sang-Bok;Hong, Ha-Cheol;Hyun, Ung-Jo;Ha, Woon-Goo;Kim, Myeong-Ki;Kim, Byeong-Ju
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.72-72
    • /
    • 2017
  • We found a new stay-green mutant from 'Pyeongwon' which is an early-maturing rice variety in Korea. The mutant showed green leaves after grain ripening period and it maintained higher SPAD value than wild type rice plant and original variety 'Pyeongwon'. The stay-green trait in rice, three genes have been identified up to date. The non-yellow coloring1 (NYC1) gene encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The non-yellow coloring3 (NYC3) gene encodes a plastid-localizing alpha/beta hydrolase-fold family protein with an esterase/lipase motif. The Sgr gene encodes a novel chloroplast protein and regulates the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of chlorophylls and LHCPs during senescence. After sequencing the PCR products, we found a single nucleotide variation($A{\rightarrow}T$) in the NYC1 gene, which changes the amino acid lysine to methionine. The NYC1 gene encodes a short-chain dehydrogenase/reductase(SDR) protein. And we confirmed the co-segregation between SNP and stay-green trait from genotyping the progenies of the mutant.

  • PDF