• 제목/요약/키워드: early ages (of concrete)

검색결과 191건 처리시간 0.025초

초기재령 콘크리트 슬래브의 처짐 예측 (Mechanical Properties of Reinforced Concrete Slabs at Early Ages)

  • 신성우;유석형;오성진;황동규;박기홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.397-400
    • /
    • 2002
  • The mechanical properties of concrete such as modulus of elasticity, bond strength and shear strength are proportional to square root of compressive strength. And compressive strength of concrete is developed rapidly at early ages. Thus the relationship between compressive strength and its mechanical properties should be verified because the mechanical properties of early age concrete and hardened concrete are different. In this study, to predict the concrete slab deflection at early ages, modulus of elasticity and effective moment of inertia(Ie) are observed and compared with experimental results.

  • PDF

Incremental extended finite element method for thermal cracking of mass concrete at early ages

  • Zhu, Zhenyang;Zhang, Guoxin;Liu, Yi;Wang, Zhenhong
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.33-42
    • /
    • 2019
  • Thermal cracks are cracks that commonly form at early ages in mass concrete. During the concrete pouring process, the elastic modulus changes continuously. This requires the time domain to be divided into several steps in order to solve for the temperature, stress, and displacement of the concrete. Numerical simulations of thermal crack propagation in concrete are more difficult at early ages. To solve this problem, this study divides crack propagation in concrete at early ages into two cases: the case in which cracks do not propagate but the elastic modulus of the concrete changes and the case in which cracks propagate at a certain time. This paper provides computational models for these two cases by integrating the characteristics of the extended finite element algorithm, compiles the corresponding computational programs, and verifies the accuracy of the proposed model using numerical comparisons. The model presented in this paper has the advantages of high computational accuracy and stable results in resolving thermal cracking and its propagation in concrete at early ages.

강도증진해석에 의한 한중콘크리트의 초기동해 방지기간 설정에 관한 검토 (A Review on the Determination of the Protecting Duration of Frost Damage at Early Ages in Cold Weater Concreting Based on the Analysis of Strength Development)

  • 한민철;김효구;황인성;윤기원;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.179-182
    • /
    • 1999
  • A protections from the frost damage at early ages is one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such surface cracks and the loss of strength. Therefore, in this paper, the protecting durations of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. According to the results, as W/C and compressive strength for protecting from frost damages at early ages increased, longer protecting duration is required. It shows that the protecting durations of FAC(Fly Ash Cement) are longer than those of OPC(Ordinary Portland Cement).

  • PDF

초기재령 콘크리트의 수분확산과 자체건조에 관한 연구 (Moisture Diffusion and Self-desiccation of Concrete at Early Ages)

  • 김진근;이칠성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.303-308
    • /
    • 1998
  • In the concrete structures exposed to environmental conditions at early ages, water movement occurs by moisture diffusion in the concrete, and self-desiccation of concrete is also occurred. Thus the internal relative humidity is changed from moisture diffusion and self-desiccation. Thus the internal relative humidity at each location in concrete includes the decrease by self-desiccation. Especially, for high-strength concrete the much unit cement content is used, so that the non-uniform relative humidity distribution is affected form self-desiccation at early ages. In this study, the internal relative humidity in concrete was measured at early ages, and the moisture diffusion component and self-desiccation component of total relative humidity were discussed.

  • PDF

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

초기재령 콘크리트의 파괴특성 (Fracture Characteristics of Concrete at Early Ages)

  • 이윤;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

한중콘크리트의 초기 동해 방지를 위한 초기 양생기간의 산정 (Determination of the Protecting Periods of Frost Damage at Early Age in Cold Weather Concreting)

  • 한천구;한민철
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.47-55
    • /
    • 2000
  • Protections from the frost damage at early ages are one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such as surface cracks and declination of strength development. Therefore, in this paper, protecting periods of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values and measured values. As W/B and compressive strength for protecting from frost damages at early ages increase, it is prolonged. It shows that the protecting periods of FAC(Fly Ash Cement) and BSC(Blast-furnace Slag Cement) concrete are longer than those of OPC(Ordinary Portland Cement) concrete. The protecting peridos from frost damage at early age by JASS are somewhat shorter than those by this paper.

미세구조 특성을 고려한 초기재령 콘크리트의 강도예측모델 (Strength Estimation Model for Early-Age Concrete Considering Microstructural Characteristics)

  • 황수덕;김의태;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.397-402
    • /
    • 2001
  • Microstructural characteristics such as hydrates and porosity greatly influence the development of concrete strength. In this study, a strength estimation model for early-age concrete considerig, the microstructural characteristics was proposed, which considers the effects of both an increment of degree of hydration and capillary porosity on a strength increment. Hydration modeling and compressive strength test with curing temperature and curing ages were carried out. By comparing test results with estimated strength, it is found that the strength estimation model can estimate compressive strength of early-age concrete with curing ages and curing temperature within a margin of error.

  • PDF

초기재령 콘크리트의 파괴 특성 (Fracture Characteristics of Concrete at Early Ages)

  • 이윤;김진근
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.58-66
    • /
    • 2002
  • 본 연구의 목적은 유효탄성균열모델과 점성균열모델의 개념에 기초한 임계응력확대계수, 임계균열단개구변위와 파괴에너지, 이선형 연화 곡선같은 콘크리트의 파괴특성들을 초기재령 콘크리트에 관해 구명하는 것이다. 이를 위해 모드 I의 파괴를 일으킬 수 있는 쐐기쪼갬시험이 노치가 있는 육각형의 쐐기 시험체에 대하여 수행되었다. 강도와 재령의 변화에 따라 하중-균열입구변위 곡선이 얻어졌으며, 이것은 선형탄성 파괴역학과 유한요소법에 의해 분석되었다. 실험 결과를 분석한 결과, 재령 1일부터 재령 28일까지의 임계응력확대계수와 파괴에너지는 증가하였으며, 임계균열단개구변위는 감소하였다. 또한 수치해석을 통하여 재령 1일부터 재령 28일까지의 이선형 연화 곡선의 네 파라미터를 구할 수 있었다. 이렇게 얻어진 초개재령 콘크리트의 파괴특성치와 이선형 연화 곡선은 초기재령 콘크리트의 파괴 기준과 유한요소해석시의 입력 상수로서 사용될 수 있을 것이다.

타설 직후의 동해가 콘크리트의 압축강도에 미치는 효과 (The Effect of Early Frost Damage after Placement on Compressive Strength of Concrete)

  • 이윤;김진근;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1199-1202
    • /
    • 2001
  • The objective of this study is to examine the effect of frost damage immediately after placement on compressive strength of concrete. Obviously frost damage produced under low curing temperature at early ages causes the loss of compressive strength of concrete. In order to find the degrees of the loss of compressive strength, compressive strength tests was peformed at 7 and 28-day ages on concrete specimen with various curing temperature history. The results from the tests showed that the loss of compressive strength relative to concrete cured under isothermal temperature at $20^{\circ}C$ was generally from 20 to 50% for 7-day ages and below 20% for 28 day ages. Considering the serious loss of compressive strength over 50% for some cases, careful attention may be needed to placing of concrete under low atmospheric temperature.

  • PDF