• Title/Summary/Keyword: ear canal volume

Search Result 7, Processing Time 0.019 seconds

Resonance Changes in the External Auditory Canal Associated with the Ear Canal Volume (외이도용적에 따른 외이도공명의 변화)

  • Choi, Ah-Hyun;Lee, Mi-So;Choi, Ah-Reum;Heo, Seung-Deok
    • Phonetics and Speech Sciences
    • /
    • v.1 no.3
    • /
    • pp.151-154
    • /
    • 2009
  • The external ear generates resonance gain because of anatomical characteristics. The ear canal resonance is influenced by the length and volume of the ear canal, the pinna, the concha cavity, the body trunk, and the speed of sound wave. This study is focus on the influence of the volume of ear canal. 17-healthy-adult (32 ears) were participated. They did not have any medical and ear disease history. The maximum resonance frequency of the ear canal was 2675 (${\pm}265$) Hz at azimuth $0^{\circ}$ and 2784 (${\pm}268$) Hz at azimuth $45^{\circ}$. The resonance gain was 18.1 (${\pm}3.9$) dB at azimuth $0^{\circ}$ and 17.9 (${\pm}3.8$) dB at azimuth $45^{\circ}$, respectively. The ear canal volume was 0.78 (${\pm}0.2$) cc and 1.32 (${\pm}0.8$) cc including static compliance. The ear canal resonance was changed depending on the ear canal volume. It was also statistically correlated at azimuth $0^{\circ}$ (p=0.038) and $45^{\circ}$ (p=0.013), respectively. The resonance gain was not correlated with the ear canal volume. The change of resonance frequency according to the ear canal volume will be useful information in the field of audiological rehabilitation especially for hearing aids fitting. In addition, we expected this study can provide the basic information for the study of the external ear resonance characteristics.

  • PDF

An Observational Study on the Morphological Changes of the External Ear Canal by Converging DICOM Imaging and Design Modeling (DICOM 영상과 설계 모델링을 융합한 외이도의 형태적 변화 관찰 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.173-179
    • /
    • 2019
  • DICOM(Digital Imaging and Communications in Medicine) imaging plays a significant role in the diagnosis and treatment of the human body, and design modeling is a technology of planning shapes in three dimensions according to the purpose. In this study, we converge these two technologies to observe the relationships of the cross-section, volume, and surface area to the morphological changes of the external ear canal. The experiment applied medical imaging technologies to acquire sections of the human body to create and divide centerlines using 3D shapes extracted from 19 external ear canals by applying stereolithography and 3-matic program. The results showed that the cross-sectional structure of the external ear canal had various shapes, such as oval (38.5%), semicircular (28.2%), mixed (17.9%), square (10.2%), and wrinkled (5.1%). In addition, the cross-sectional area of each phase increased as the length of the external ear canal increased, and the volume and surface area decreased towards the direction of the eardrum. However, the surface area reduction rate was relatively low. This indicates that the structure becomes irregular towards the direction of the eardrum.

A Study on the Acoustic Analysis Method of the External Ear Canal Using DICOM Images (DICOM 영상을 이용한 외이도 음향해석 방법에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.73-79
    • /
    • 2019
  • This study simulated external ear canal modeling with different external ear canal lengths, vertical flexion angles, and inner/outer diameter ratios using digital imaging and communications in medicine(DICOM) of the head temporal region and measured the acoustic sensitivity. The experiment was performed by increasing the audible frequency for humans by 200 Hz and expressing the frequency constantly transmitted at 1 Pa as the eardrum acoustic volume and presented the measurements by linear and quadratic curve regression analysis. The results showed that the longer the external ear canal length and the higher the ratio of the outer/inner diameter, the faster the acoustic response at lower frequencies. The acoustic sensitivity correlation of the meta-model using regression analysis showed a 77% influence by the external ear canal length and 5% by the external/internal diameter ratio, while the vertical flexion angle did not show a significant relationship. This showed that auditory acoustic sensitivity of humans is a factor that reacts faster at a low frequency when the external ear canal length is longer and when the difference between the outer and inner diameter is higher.

Parameter Extraction and Simulation in order to Manufacture Ready-made Ear Shell for CIC Type Hearing Aids (CIC형 보청기용 범용 이어쉘 제작을 위한 파라미터 추출 및 시뮬레이션)

  • U, Erdenebayar.;Jeon, Y.Y.;Park, G.S.;Song, Y.R.;Lee, S.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • Most of the ear shells of hearing aids are manufactured manually, and it is one of the reasons that the cost of the custom-made hearing aids can be increased. Thus it is required to manufacture the ready-made ear shell for the purpose of easy manufacturing and decrease in cost. In this study, we extract parameters in order to manufacture the ready-made ear shell for CIC type hearing aids and simulate to reconstruct the ear shell using the extracted parameters. To parameter extraction, we set up the eleven parameters for the ready-made ear shell based on anatomical characteristics of the ear canal, and we found values of the parameters from twenty-one impressions in their 20s and twelve impressions in their 60s using aperture detection and feature detection algorithms. Classifying the parameters by size, we also determine the parameters of ready-made ear shell into three types for people in their 20s and two types for people in their 60s. Each ready-made ear shell was simulated to reconstruct using figured parameters, and evaluated the rate of agreement with unused impressions for setting parameters. To evaluate the ready-made ear shell, we calculate the volume ratio and intersection between of the each impression and ready-made ear shell, and the intersection ratio using the intersection volume and ready-made ear shell volume. As a result, the volume ratio was about 70%, and volume match ratio was also up to 70%. It means that the ready-made ear shell we simulated is the significantly matched to impression.

A Study on Design Parameters for Ready-made Ear Shell of Hearing Aids (보청기용 범용 이어쉘을 위한 설계 파라미터에 관한 연구)

  • Urtnasan, Erdenebayar;Jeon, Yu-Yong;Park, Gyu-Seok;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1055-1061
    • /
    • 2011
  • In this study, main parameters: aperture, first bend and second bend which express a structure of ear canal are extracted in order to modeling and manufacture the ready-made ear shells of hearing aids. The proposed parameter extraction method consists of 2 important algorithms, aperture detection and feature detection. In the aperture detection algorithm, aperture of 3-D scanned virtual ear impression and parameters relating to ear shell of hearing aid are determined. The feature detection algorithm detects first bend, second bend, and related parameters. Through these two algorithms, parameters for aperture, first bend, and second bend are extracted to model the ready-made ear shell of hearing aid. The values of these extracted parameters from 36 people's right ear impression are analyzed and measured statistically. As a result of the analysis, it has been found that it is possible to classify ready-made ear shell parameters by age and size. The ready-made ear shell parameters are classified 3-size for 20 years old and 2-size for 60 years olde. Using 3D rhino program, virtual ready-made ear shell is reconstructed by parameters of every type, and simulated to model it. A final product was produced by transferring simulation result with rapid prototyping system. The modeled ready-made ear shell is evaluated with the objective and subjective method. Objective method is the comparison volume ratio and overlapped volume ratio of ear impression from randomly chosen 18 people and ready-made ear shell. And subjective method is that the final product of ready-made ear shell is used by users and the satisfaction number drawn from well fitting and comfortable testing was evaluated. In the result of the evaluation, it has been found that volume ration is 70%, big and middle size ready-made ear shell products are possible, and the satisfaction number is high.

Experimental and clinical studies with impedance audiometry; the increase in air volume in the middle ear air system and the pneumatization of human temporal bones (측두골의 함기도와 중이강의 용적이 고막 임피던스에 미치는 영향에 관한 연구)

  • 민양기
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1977.06a
    • /
    • pp.4.4-5
    • /
    • 1977
  • The vibratory energy introduced into the external ear canal is changed by the mechanical factors of eardrum itself, the motility of ossicles, and the air cushion of tympanic cavity and the like. This study was designed to investigate the volume of middle ear cavity and mastoid air cell system as a factor of determining the accoustic impedance of middle ear system. The author studied how the increase in air volume of middle ear cavity effects on the acoustic impedance of middle ear system with dogs' ears and researched the correlation between the degree of pneumatization of temporal bones and the acoustic impedance of middle ear system by comparing the radiological findings of pneumatization (Law's and Towne's projection) with the acoustic impedance measurements with Madsen ZO 70. The result is as follows: 1 The tympanometric findings in control state revealed the curves of type A, and did not change in its configuration by the increase in the air volume of dogs middle ear system. 2. The static compliance of middle ear revealed a distinct and linear increase in proportion to the increase in air volume of middle ear system; the rate of increase was $0.05{\pm}0.02$ cc of static compliance per cc of air volume. 3. Authenticated in the above result and the tendency to increase in static compliance in proportion to the increase in the degree of pneumatization of temporal bones, there was significant regression equation between the degree of pneumatization of temporal bones (x variable) and the static compliance of middle ear system; $y=0.19x{\pm}0.16{\pm}0.05$ It is suggested that the difference in volume of middle ear system plays an important role in the change of the static compliance of middle ear, and the author concludes that the measurement of static compliance of middle ear has clinical value as diagnostic means of evaluating the degree of pneumatization of temporal bones along with some radiological examination.

  • PDF