• Title/Summary/Keyword: eae

Search Result 83, Processing Time 0.02 seconds

The expression of interleukin-1β converting enzyme in experimental autoimmune encephalomyelitis (자기면역성 뇌척수염에서 interleukin-1β converting enzyme의 발현)

  • Moon, Chang-jong;Kim, Seung-joon;Lee, Yong-duk;Shin, Tae-kyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.538-544
    • /
    • 1999
  • To elucidate the involvement of interleukin-$1{\beta}$ converting enzyme (ICE) in the course of experimental autoimmune encephalomyelitis (EAE), we induced EAE by immunizing rats with an emulsion of rat spinal cord homogenate with complete Freund's adjuvant supplemented with Mycobacterium tuberculosis (H37Ra, 5mg/ml) and then examined the expression of ICE in the spinal cord of rats with EAE. In normal rat spinal cords, ICE is constitutively, but weakly, expressed in ependymal cells, neurons, and some neuroglial cells. In EAE, many inflammatory cells are positive for ICE, and the majority of ICE+ cells were identified as ED1+ macrophages. During this stage of EAE, the number of ICE+ cells in brain cells, including neurons and astrocytes, increased and these cells also had increased ICE immunoreactivity. These findings suggest that the upregulation of ICE in both brain cells and invading hematogenous cells is stimulated by a secretory product from inflammatory cells, and that this enzyme is involved in the pathogenesis of EAE via the production of IL-1 beta.

  • PDF

Glatiramer acetate inhibits the activation of NFκB in the CNS of experimental autoimmune encephalomyelitis (Glatiramer acetate 투여에 의한 자가면역성 뇌척수염 마우스의 중추신경계에서의 NFκB 활성 억제)

  • Hwang, Insun;Ha, Danbee;Kim, Dae Seung;Joo, Haejin;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.217-225
    • /
    • 2011
  • Glatiramer acetate (GA; Copaxone) has been shown to be effective in preventing and suppressing experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). It has been recently shown that GA-reactive T cells migrate through the blood-brain barrier, accumulate in the central nervous system (CNS), secrete antiinflammatory cytokines and suppress production of proinflammatory cytokines of EAE and MS. Development of EAE requires coordinated expression of a number of genes involved in the activation and effector functions of inflammatory cells. Activation of inflammatory cells is regulated at the transcriptional level by several families of transcription factors. One of these is the nuclear factor kappa B ($NF{\kappa}B$) family which is present in a variety of cell types and involved in the activation of immune-relative genes during inflammatory process. Since it is highly activated at site of inflammation, $NF{\kappa}B$ activation is also implicated in the pathogenesis of EAE. In this study, we examined whether the inhibition of $NF{\kappa}B$ activation induced by GA can have suppressive therapeutic effects in EAE mice. We observed the expression of $NF{\kappa}B$ and phospho-$I{\kappa}B$ proteins increased in GA-treated EAE mice compared to EAE control groups. The immunoreactivity in inflammatory cells and glial cells of $NF{\kappa}B$ and phospho-$I{\kappa}B$ significantly decreased at the GA-treated EAE mice. These results suggest that treatment of GA in EAE inhibits the activation of $NF{\kappa}B$ and phophorylation of $I{\kappa}B$ in the CNS. Subsequently, the inhibition of $NF{\kappa}B$ activation and $I{\kappa}B$ phosphorylation leads to the anti-inflammatory effects thereby to reduce the progression and severity of EAE.

Effect of Bosentan, $ET_{A+B}$ antagonist, on EAE-induced lewis rat.

  • Park, Young shim;Bong su Kang;In hoi Huh
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.192-192
    • /
    • 1996
  • Endothelin has $ET_{A}$ type and $ET_{B}$ type receptors, and it has been thought that ET-1 proves vasoconstriction effect via $ET_{A}$ receptor and vasodilation via $ET_{B}$ receptor. Recently, it has been reported that $ET_{B}$ receptor is also related to the vaso-constriction. Bosentan is a $ET_{A+B}$ receptor antagonist, and proves it's effect on trauma and ischemia. We already announced that the level of Endothelin-1 increase in the brain and spinal cord of EAE-induced lewis rat and showed the origin of ET-1 is activated macrophages. Intracisternal injection of Bosentan, $ET_{A+B}$ receptor antagonist, (300nmol/body) was done for observing the role of endothelin-1 on the pathogenesis of EAE. Bosentan ameliorated the severity of clinical score of EAE and decreased the histologically observed inflammatory region. The blocking effect on the progression of EAE model suggests that Bosentan is a physiological antagonist in terms of development of the sign of multiple sclerosis.

  • PDF

Appearance of osteoporosis in rat experimental autoimmune encephalomyelitis

  • Ahn, Meejung;Kang, Sohi;Park, Channam;Kim, Jeongtae;Jung, Kyungsook;Yang, Miyoung;Kim, Sung-Ho;Moon, Changjong;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.117-120
    • /
    • 2016
  • Experimental autoimmune encephalomyelitis (EAE) in Lewis rats is characterized by transient paralysis followed by recovery. To evaluate whether transient paralysis in EAE affects bone density, tibiae of EAE rats were morphologically investigated using micro-computed tomography and histology. The parameters of bone health were significantly reduced at the peak stage of EAE rats relative to those of controls (p < 0.05). The reduction of bone density was found to remain unchanged, even in the recovery stage. Collectively, the present data suggest that osteoporosis occurs in paralytic rats with monophasic EAE, possibly through the disuse of hindlimbs and/or autoimmune inflammation.

Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis

  • Sapkota, Arjun;Park, Se Jin;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • Multiple sclerosis (MS) is an autoimmune disease characterized by progressive neuronal loss, neuroinflammation, axonal degeneration, and demyelination. Previous studies have reported that 6-shogaol, a major constituent of ginger (Zingiber officinale rhizome), and its biological metabolite, 6-paradol, have anti-inflammatory and anti-oxidative properties in the central nervous system (CNS). In the present study, we investigated whether 6-shogaol and 6-paradol could ameliorate against experimental autoimmune encephalomyelitis (EAE), a mouse model of MS elicited by myelin oligodendrocyte glycoprotein ($MOG_{35-55}$) peptide immunization with injection of pertussis toxin. Once-daily administration of 6-shogaol and 6-paradol (5 mg/kg/day, p.o.) to symptomatic EAE mice significantly alleviated clinical signs of the disease along with remyelination and reduced cell accumulation in the white matter of spinal cord. Administration of 6-shogaol and 6-paradol into EAE mice markedly reduced astrogliosis and microglial activation as key features of immune responses inside the CNS. Furthermore, administration of these two molecules significantly suppressed expression level of tumor necrosis $factor-{\alpha}$, a major proinflammatory cytokine, in EAE spinal cord. Collectively, these results demonstrate therapeutic efficacy of 6-shogaol or 6-paradol for EAE by reducing neuroinflammatory responses, further indicating the therapeutic potential of these two active ingredients of ginger for MS.

Antipyretic and Diuretic Activity of Ammania baccifera

  • Joanofarc, J.;Sangeeta, J.;Jayakumari, S.;Kumar, S. Sadish;Gopinadh, B.;Sam, S. Kishore Gnana
    • Natural Product Sciences
    • /
    • v.9 no.3
    • /
    • pp.180-182
    • /
    • 2003
  • In the present study the whole plant of Ammania baccifera Linn was extracted with petroleum ether, chloroform, ethyl acetate and ethanol. The extracts were vacuum dried to yield the respective petroleum ether (PEE), chloroform (CE), ethyl acetate (EAE) and ethanol extracts (EE). PEE, CE, EAE and EE were evaluated for their antipyretic and diuretic activity at 200 mg/kg dose level. Significant antipyretic activity was associated with PEE, CE, EAE and EE. CE was found to exhibit higher antipyretic activity as paracetamol at 100 mg/kg dose level. Significant diuretic activity was exhibited by EAE, EE and PEE. The present study supports the claims of Ammania baccifera mentioned in the Indian system of medicine.

Immunohistochemical study of CPP32 (Caspase-3) in the spinal cords of rats with experimental autoimmune encephalomyelitis (자기면역성 뇌척수염 조직에서 CPP32의 면역조직화학적 관찰)

  • Shin, Tae-kyun;Moon, Chang-jong;Ahn, Mee-jung;Wie, Myung-bok
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.431-437
    • /
    • 2000
  • The aim of this study was to evaluate the involvement of CPP32 (caspase-3), one of the death-related enzymes, in the course of experimental autoimmune encephalomyelitis (EAE). EAE was induced in Lewis rats immunized with an emulsion of rat spinal cord homogenate with complete Freunds adjuvant supplemented with Mycobacterium tuberculosis (H37Ra, 5mg/ml). The expression of CPP32 in the spinal cords of rats with EAE was studied. In normal rat spinal cords, CPP32 is constitutively, but weakly, expressed in neurons and some neuroglial cells. In the EAE spinal cords, many inflammatory cells were positive for CPP 32, and the majority of CPP32(+) cells were identified as ED1(+) macrophages. During this stage of EAE, the number of CPP32(+) cells in brain cells, including neurons and astrocytes, increased, and these cells also had increased CPP32 immunoreactivity. CPP32 immunor eactivity was not always matched with apoptosis of inflammatory cells in EAE lesions. We speculate that CPP32, which is constitutlvely expressed in brain cells, increases in response to neuroimmunological stimulation in both brain neuronal cells and inflammatory cells. The functional role of CPP32 in neuroimmunological disorders is discussed.

  • PDF

Amelioration of experimental autoimmune encephalomyelitis by Ishige okamurae

  • Ahn, Meejung;Kim, Jeongtae;Yang, Wonjun;Choi, Yuna;Ekanayake, Poornima;Ko, Hyunju;Jee, Youngheun;Shin, Taekyun
    • Anatomy and Cell Biology
    • /
    • v.51 no.4
    • /
    • pp.292-298
    • /
    • 2018
  • Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed $TCR{\alpha}{\beta}^+$ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis $factor-{\alpha}$ and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.

Overexpression of Galectin-3 in Macrophages of C57BL/6 mice with Experimental Autoimmune Encephalomyelitis (자가면역성 뇌척수염을 유도한 C57BL/6 마우스 큰포식세포에서의 Galectin-3의 과발현)

  • Kim, Dae Seung;Hwang, Insun;Park, Suk-jae;Ahn, Ginnae;Park, Sang-Joon;Park, Hyun Jeong;Joo, Hong-Gu;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.2
    • /
    • pp.139-149
    • /
    • 2011
  • Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in the murine central nervous system (CNS) and has long been used as an animal model for human multiple sclerosis. Development of EAE requires coordinated expression of a number of genes that are involved in the activation and effector functions of inflammatory cells. Galectin-3 (Gal-3) is a member of the betagalactoside- binding lectin family and plays an important role in inflammatory responses through its functions on cell activation, cell migration or inhibition of apoptosis. We investigated the functional role of Gal-3 in EAE mice following immunization with myelin oligodendrocyte glycoprotein $(MOG)_{35-55}$ peptide. During the peak stage of EAE, the localization of Gal-3 in inflammatory cells markedly increased in subarachnoid membranes and perivascular regions of CNS. In contrast, Gal-3 was weakly detected in cerebrum and spinal of the recovery stage of EAE. Consistent with this finding, western blot analysis revealed that Gal-3 expression was significantly increased at the peak stage while it was slightly decreased at the recovery stage in the CNS. In addition, the population of $CD11b^{+}$ macrophage expressing Gal- 3 in spleen of EAE mice was markedly increased compared with control mice. In fact, most of activated macrophages isolated from spleen of EAE mice expressed Gal-3. Taken together, our results demonstrate that the over-expression of Gal-3 in activated macrophages may play a key role in promoting inflammatory cells in the CNS during EAE.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.