• Title/Summary/Keyword: eCA inhibition

Search Result 94, Processing Time 0.025 seconds

Acute Ethanol Reduces Calcium Signaling Elicited by K+ Depolarization in Cultured Cerebellar Granule Neurons

  • Kim, Jong-Nam
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.63-66
    • /
    • 2000
  • The effects of acute ethanol on the high K+ induced $Ca^{2+}}$ signals were examined from primary cultures of cerebellar granule neurons. $Ca^{2+}}$ signals were measured with Calcium Green-1 based microscopic video imaging. Because $Ca^{2+}}$ signal was low in most of granule neurons without stimuli, high KCI was used for depolarization. In most case, acute exposure to ethanol reduced the peak amplitude of the $Ca^{2+}}$ signals, induced by high K+, even though low concentration of ethanol(2~10mM) was used and the effects lasted more than 30min. In was also possible to see differences of ethanol inhibition, i.e. the temporal pattern of $Ca^{2+}}$ signal reductions and the strength of inhibition of $Ca^{2+}}$ signals in cerebellar granule neurons. These results indicate that low concentration of ethanol has diverse actions on the $Ca^{2+}}$ signals in cerebellar granule neurons.

  • PDF

Synergistic Inhibition of Escherichia coli by a Combination of Bacteriophage and Organic Acid (박테리오파지와 유기산의 병용처리에 의한 효율적인 대장균 생육 억제)

  • Kim, Seon-Gyu;Moon, Gi-Seong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.591-594
    • /
    • 2019
  • Some strains of Escherichia coli are categorized as pathogenic bacteria and alternative antimicrobials including bacteriophages for controlling these bacteria have been studied. In this study we screened antimicrobial candidates that present synergistic inhibition of the growth of E. coli DH5α as a model when co-treated with the bacteriophage ECP27 to target the bacteria. As candidates, CaCl2, lactic acid, and citric acid were tested. CaCl2 showed a synergistic inhibition against the strain by dose-dependent manner at 6 h of incubation but the viable cell count was recovered at 12 h. However, lactic acid and citric acid at 30 mM concentration showed synergistic inhibitions at 6 h of incubation and cleared the viable cells of E. coli DH5α at 12 h when co-treated with the bacteriophage even though lactic acid or citric acid alone was effective. Therefore, co-treatment using the bacteriophage and organic acids such as lactic acid and citric acid can be a solution for synergistic inhibition of the growth of E. coli.

Inhibitory Effects of Chitosanascorbate on Growth of Staphylococcus aureus and Escherichia coli Contaminated in Flounder during Storage (참가자미의 저장 중 오염미생물 Staphylococcus aureus와 Escherichia coli의 생육에 미치는 Chitosanascorbate의 영향)

  • Kim, Young-Sook;Oh, Seung-Hee;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.128-133
    • /
    • 2009
  • We performed an experiment of keeping the extension of raw and semi-dried flounder (Pleuronectes herzensteini). The effect of with (WG) or without gill (OG), drying degree (20% drying: 20D, 40% drying: 40D) and storage temperature($5^{\circ}C$) and 0.1% chitosan-ascorbate (CA) treatment of vacuum packaging flounder on the growth of contaminated microorganism during storage for 10 days were investigated. Total aerobacter (TA) in the OG-treated raw flounder was $0.29{\sim}0.44$ log cycle lower than that of WG-treated flounder. Also, the number of Staphylococcus aureus (SA) and E. coli (EO) in OG were lower compared with WG. The number of TA, SA and EO in 20 D among 0 D, 20 D and 40 D stored at $5^{\circ}C$ were lowest. Especially, the SA and EO was $0.13{\sim}0.53$, 0.3-0.88, and 0.13-0.74 log cycle lower compared with raw flounder. The growth of TA, SA and EO separated from raw flounder in tryptic soy broth were completely inhibited by 0.1% CA. The anti-biotical effect of CA of two microorganisms SA and EO that separated from flounder, and the growth of all of them were 90% (SA), 96% (EO) inhibited at the 0.1% CA. The inhibition times at $37^{\circ}C$ in soy broth was 36 hr. However when CA was added directly to flounder, it appeared inhibition effect to 0.88 log cycle. The effect of CA was better when gills removed and 20% drying.

Relaxing Effects of Acanthopanacis Cortex through NO Production and PDE-5 Inhibition in Corpus Cavernosum (오가피의 NO 생성과 PDE-5 억제를 통한 음경해면체 이완효과)

  • Kim, Ho Hyun;Park, Sun Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • This study was aimed to examine relaxing effects of Acanthopanacis cortex(AC) through nitric oxide(NO) production and phosphodiesterase type 5(PDE-5) inhibition in corpus cavernosum. In order to define the relaxation effects of AC extract, rabbit corpus cavernous tissues were prepared in $2{\times}2{\times}8mm$ sized strip. AC extract ($0.01-3.0mg/m{\ell}$) were treated in contracted strips induced by phenylephrine(PE) and $N{\omega}$-nitro-L-arginine (L-NNA) was treated before AC extract-treated. And calcium chloride($Ca^{2+}$) 1 mM was infused into precontracted strips after pretreatment of AC extract in $Ca^{2+}-free$ krebs-ringer solution. When AC extract was applied to human umbilical vein endothelial cell(HUVEC), cell viability was measured by MTT assay, and NO concentration was measured by Griess reagent system. Ratio of smooth muscles to collagen fibers and eNOS, PDE-5 positive reaction were measured by histochemical and immunohistochemical process on mice corpus cavernosum. AC extract significantly affected relaxion of the cavernous strips, and the pretreatment of L-NNA inhibited AC extract-induced relaxation. Contraction induced by the addition of $Ca^{2+}$ was inhibited by treatment with the AC extract in $Ca^{2+}-free$ solution. In AC group, NO concentration, ratio of smooth muscle to collagen fibers, and eNOS positive reaction were increased, PDE-5 positive reaction was decreased compared to PE group. As a result of the above experiment, it was thought that AC extract inhibits the inflow of extracellular $Ca^{2+}$ by activating cGMP through the increase of eNOS / NO and the decrease of PDE-5 which inhibits cGMP activity, in the corpus cavernosum.

Development of Selective Butyrylcholinesterase Inhibitors Using (R)-Lipoic Acid-Polyphenol Hybrid Molecules

  • Woo, Yeun-Ji;Lee, Bo-Hyun;Yeun, Go-Heum;Kim, Hyun-Ju;Ko, Jang-Myoun;Won, Moo-Ho;Lee, Bong-Ho;Park, Jeong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2997-3002
    • /
    • 2011
  • A series of hybrid molecules between (R)-lipoic acid (ALA) and the acetylated or methylated polyphenol compounds were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibition activities were checked. The $IC_{50}$ values of all hybrid molecules for a BuChE inhibition were lower than those of the single parent compounds. Specifically, ALA-acetyl protected caffeic acid (11, ALA-AcCA) was shown as an effective inhibitor of BuChE ($IC_{50}=0.5{\pm}0.2\;{\mu}M$) and also had a great selectivity for BuChE over AChE (more than 800 fold). Inhibition kinetic study indicated that 11 is a mixed inhibition type. Its binding affinity ($K_i$) value to BuChE is $1.52{\pm}0.18\;{\mu}M$.

Arginase inhibition by rhaponticin increases L-arginine concentration that contributes to Ca2+-dependent eNOS activation

  • Koo, Bon-Hyeock;Lee, Jonghoon;Jin, Younghyun;Lim, Hyun Kyo;Ryoo, Sungwoo
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.516-521
    • /
    • 2021
  • Although arginase primarily participates in the last reaction of the urea cycle, we have previously demonstrated that arginase II is an important cytosolic calcium regulator through spermine production in a p32-dependent manner. Here, we demonstrated that rhaponticin (RPT) is a novel medicinal-plant arginase inhibitor and investigated its mechanism of action on Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation. RPT was uncompetitively inhibited for both arginases I and II prepared from mouse liver and kidney. It also inhibited arginase activity in both aorta and human umbilical vein endothelial cells (HUVECs). Using both microscope and FACS analyses, RPT treatments induced increases in cytosolic Ca2+ levels using Fluo-4 AM as a calcium indicator. Increased cytosolic Ca2+ elicited the phosphorylations of both CaMKII and eNOS Ser1177 in a time-dependent manner. RPT incubations also increased intracellular L-arginine (L-Arg) levels and activated the CaMKII/AMPK/Akt/eNOS signaling cascade in HUVECs. Treatment of L-Arg and ABH, arginase inhibitor, increased intracellular Ca2+ concentrations and activated CaMKII-dependent eNOS activation in ECs of WT mice, but, the effects were not observed in ECs of inositol triphosphate receptor type 1 knockout (IP3R1-/-) mice. In the aortic endothelium of WT mice, RPT also augmented nitric oxide (NO) production and attenuated reactive oxygen species (ROS) generation. In a vascular tension assay using RPT-treated aortic tissue, cumulative vasorelaxant responses to acetylcholine (Ach) were enhanced, and phenylephrine (PE)-dependent vasoconstrictive responses were retarded, although sodium nitroprusside and KCl responses were not different. In this study, we present a novel mechanism for RPT, as an arginase inhibitor, to increase cytosolic Ca2+ concentration in a L-Arg-dependent manner and enhance endothelial function through eNOS activation.

Nimodipine as a Potential Pharmacological Tool for Characterizing R-Type Calcium Currents

  • Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.511-519
    • /
    • 2001
  • Nimopidine, one of dihydropyridine derivatives, has been widely used to pharmacologically identify L-type Ca currents. In this study, it was tested if nimodipine is a selective blocker for L-type Ca currents in sensory neurons and heterologous system. In mouse dorsal root ganglion neurons (DRG), low concentrations of nimodipine $(<10\;{\mu}M),$ mainly targeting L-type Ca currents, blocked high-voltage-activated calcium channel currents by ${\sim}38%.$ Interestingly, high concentrations of nimodipine $(>10\;{\mu}M)$ further reduced the 'residual' currents in DRG neurons from ${\alpha}_{1E}$ knock-out mice, after blocking L-, N- and P/Q-type Ca currents with $10\;{\mu}M$ nimodipine, $1\;{\mu}M\;{\omega}-conotoxin$ GVIA and 200 nM ${\omega-agatoxin$ IVA, indicating inhibitory effects of nimodipine on R-type Ca currents. Nimodipine $(>10\;{\mu}M)$ also produced the inhibition of both low-voltage-activated calcium channel currents in DRG neurons and ${\alpha}_{1B}\;and\;{\alpha}_{1E}$ subunit based Ca channel currents in heterologous system. These results suggest that higher nimodipine $(>10\;{\mu}M)$ is not necessarily selective for L-type Ca currents. While care should be taken in using nimodipine for pharmacologically defining L-type Ca currents from native macroscopic Ca currents, nimodipine $(>10\;{\mu}M)$ could be a useful pharmacological tool for characterizing R-type Ca currents when combined with toxins blocking other types of Ca channels.

  • PDF

Study on Inhibition of Platelet Aggregation of Bioactive Constituents from Paeonia lactiflora (작약의 혈소판 응집억제작용에 관한 연구)

  • 박관혁;서범석;손동주;박영현;장성근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.357-360
    • /
    • 2003
  • Methanol extracts from Paeonia lactiflora showed a strong inhibition against platelet aggregation on platelet activation test. Therefore, the bioactive constituents from Paeonia lactiflora were prepared using chromatography methods and were analyzed by NMR and reference data. Compound 1b was confirmed a same structure with henzoyloxypaeoniflorin, compound 2e was a same structure with paeoniflorin; main product of Paeonia lactiflora. Analytical data of compound 3a were not consistent with any known paeoniflorin soucture, but showed the souctural similarity with it. And also the aggregation inhibition activity of compound 3a showed a strong inhibition($\geq$ 90%) induced by collagen. Therefore it suggested that the structure of compound 3a may be the similar structure of benzoyloxypaeoflorin with a functional group in place of benzoyl group and/or a different functional group in stead of Rl. We suggested that benzoyl group of benzoyloxypaeoniflorin substitued instead of 5-carbon OH group on glycoside moiety paeoniflorin played role of the metabolite in case of a platelet aggregation inhibition activity. Paeoniflorin showed more strong inhibition by thrombin than collagen. Therefore, it may be destructed a calcium metabolite as a forming $Ca^2+$ chelate. Compound 3a may be that other functional group instead of OH group of 5-carbon on glycoside moiety of paeoniflorin and/or OH group of benzoyl moiety of paeoniflorin played role of the metabolite in a platelet aggregation inhibition.

  • PDF

Nitro oxide in human cytomegalovirus replication and gene expression

  • Lee, Jee-Yeon;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.152-157
    • /
    • 1997
  • Infection of human fibroblast (HF) cells with human cytomegalovirus (HCMV) result in changes in the intracellular level of second messengers. Since nitric oxide (NO) production has been known to be related with other second messengers, it is probable that HCMV infection of HF cells may involve NO. To test this possibility, the amount of NO was measured following ogenous addition of NO generators such as sodium nitroprusside (SNP) or S-nitroso-N-a-cetylpenicillamine (SNAP) immediately after HCMV infection, however, inhibited virus multiplication. Furthermore, immunoblot experiment using monoclonal antibody to HCMV major immediate early (MIE) proteins or CAT assay using pCMVIE/CAT (plasmid containing CAT gene driven by HCMV MIE promoter) revealed that SNP or SNAP blocked the MIE gene expression. SNP was more effective than SNAP in hibiting HCMV multiplication or MIE gene expression. SNP produced more NO than SNAP in inhibiting HCMV multiplication or MIE gene expression. SNP produced more NO than SNAP. Although the mechanism for the inhibition of HCMV multiplication and MIE gene expression by NO is still elusive some correlation with NO-mediated inhibition of HCMV-induced increase in cytosolic free Ca$\^$2+/ concentration ([Ca$\^$2+/]) was observed. The increase of [Ca$\^$2+/] following HCMV infection was inhibited by SNP, and less effectively by SNAP. Raising [Ca$\^$2+/ with bromo-A23187 partially reversed the SNP block of MIE gene expression. Thus, there appear to e some relationships among NO. [Ca$\^$2+/], and HCMV MIE gene expression.

  • PDF

Growth Characteristics of Ultrahigh-density Microalgal Cultures

  • Richmond, Amos
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.349-353
    • /
    • 2003
  • The physiological characteristics of cultures of very high cell mass (e.g. 10g cell mass/L), termed“ultrahigh cell density cultures”is reviewed. A close relationship was found between the length of the optical path (OP) in flat-plate reactors and the optimal cell density of the culture as well as its areal (g m$\^$-2/ day$\^$-1/) productivity. Cell-growth inhibition (GI) unfolds as culture density surpasses a certain threshold. If it is constantly relieved, a 1.0cm OP reactor could produce ca. 50% more than reactors with longer OP, e.g. 5 or 10cm. This unique effect, discovered by Hu et al. [3], is explained in terms of the relationships between the frequency of the light-dark cycle (L-D cycle), cells undergo in their travel between the light and dark volumes in the reactor, and the turnover time of the photosynthetic center (PC). In long OP reactors (5cm and above) the L-D cycle time may be orders of magnitude longer than the PC turnover time, resulting in a light regime in which the cells are exposed along the L-D cycle, to long, wasteful dark periods. In contrast, in reactors with an OP of ca. 1.0 cm, the L-D cycle frequency approaches the PC turnover time resulting in a significant reduction of the wasteful dark exposure time, thereby inducing a surge in photosynthetic efficiency. Presently, the major difficulty in mass cultivation of ultrahigh-density culture (UHDC) concerns cell growth inhibition in the culture, the exact nature of which is awaiting detailed investigation.