• 제목/요약/키워드: eAI framework

검색결과 16건 처리시간 0.023초

Maximum Likelihood-based Automatic Lexicon Generation for AI Assistant-based Interaction with Mobile Devices

  • Lee, Donghyun;Park, Jae-Hyun;Kim, Kwang-Ho;Park, Jeong-Sik;Kim, Ji-Hwan;Jang, Gil-Jin;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4264-4279
    • /
    • 2017
  • In this paper, maximum likelihood-based automatic lexicon generation using mixed-syllables is proposed for unlimited vocabulary voice interface for East Asian languages (e.g. Korean, Chinese and Japanese) in AI-assistant based interaction with mobile devices. The conventional lexicon has two inevitable problems: 1) a tedious repetition of out-of-lexicon unit additions to the lexicon, and 2) the propagation of errors during a morpheme analysis and space segmentation. The proposed method provides an automatic framework to solve the above problems. The proposed method produces a level of overall accuracy similar to one of previous methods in the presence of one out-of-lexicon word in a sentence, but the proposed method provides superior results with the absolute improvements of 1.62%, 5.58%, and 10.09% in terms of word accuracy when the number of out-of-lexicon words in a sentence was two, three and four, respectively.

3D 오토인코더 기반의 뇌 자기공명영상에서 다발성 경화증 병변 검출 (Multiple Sclerosis Lesion Detection using 3D Autoencoder in Brain Magnetic Resonance Images)

  • 최원준;박성수;김윤수;감진규
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.979-987
    • /
    • 2021
  • Multiple Sclerosis (MS) can be early diagnosed by detecting lesions in brain magnetic resonance images (MRI). Unsupervised anomaly detection methods based on autoencoder have been recently proposed for automated detection of MS lesions. However, these autoencoder-based methods were developed only for 2D images (e.g. 2D cross-sectional slices) of MRI, so do not utilize the full 3D information of MRI. In this paper, therefore, we propose a novel 3D autoencoder-based framework for detection of the lesion volume of MS in MRI. We first define a 3D convolutional neural network (CNN) for full MRI volumes, and build each encoder and decoder layer of the 3D autoencoder based on 3D CNN. We also add a skip connection between the encoder and decoder layer for effective data reconstruction. In the experimental results, we compare the 3D autoencoder-based method with the 2D autoencoder models using the training datasets of 80 healthy subjects from the Human Connectome Project (HCP) and the testing datasets of 25 MS patients from the Longitudinal multiple sclerosis lesion segmentation challenge, and show that the proposed method achieves superior performance in prediction of MS lesion by up to 15%.

시스템공학 표준 프로세스에 대한 그래픽 모델화 연구 (A Study on Graphical Modeling Methods for Systems Engineering Standard Processes)

  • 임용택;이병길;이재천
    • 시스템엔지니어링학술지
    • /
    • 제2권2호
    • /
    • pp.27-32
    • /
    • 2006
  • The emerging standards since 1990's can be classified as 'system standards' (process-oriented standards) and they specify the process of an enterprise and also apply to almost all industries regardless of size, type and products. Notice that the conventional specification-oriented standards present relatively clear criteria even though the structure, performance, and terminology are defined in text-based form. However, the system standards dealing with the processes do not present a coherent guide. Therefore, it is difficult to analyze them with the same viewpoint, thereby resulting in differences in the level of understanding. This study is aimed at graphically modeling the system standards originally described in text-based form. The study has been carried out in the framework of the PMTE (Process, Methods, Tools, and Environment) paradigm. The system standard targeted here is ISO/IEC 15288. Firstly, review of the literature on the systems engineering (SE) standard/process and on the graphic model IDEF0 was done, respectively, for the parts of 'E' and 'M'. Then the SE process of the MIL-STD 499B was applied to ISO/IEC 15288 as 'P'. Finally, the graphical model was generated by AI0Wins as 'T'. As a result, the graphical model-based approach can complement the drawbacks of the text-based form.

  • PDF

Out-of-Stock versus Sold-Out: Consumers' Cognitive Processes Triggered by Unavailability Marks in Online Shopping Malls

  • Cheul Rhee;Wooseok Park
    • Asia pacific journal of information systems
    • /
    • 제30권2호
    • /
    • pp.439-456
    • /
    • 2020
  • In online shopping, "out-of-stock" and "sold-out" are used to indicate product unavailability, and this unavailability and its effects on consumers' behaviors have been studied with great interest for practical purposes. However, few studies have specifically discussed out-of-stock and sold-out products in the same paper. We hypothesized that consumers might cognitively interpret items marked out-of-stock and sold-out differently, and in this paper, we studied these potential differences from the perspectives of consumers' emotions, behaviors, and loyalty based on the stimulus-organism-response framework. In order to explore the differences, we used a multi-method approach that consisted of experiments, surveys, and interviews. Specifically, we built an experimental website on which the same products were categorized as either out-of-stock or sold-out, and we measured the participants' emotions, attitudes, and intentions after the experiment. After two weeks, we conducted interviews to confirm our results and to learn more about consumers' everyday behavior. In the results, males and females demonstrated differences in emotion, behaviors, and loyalty with the interaction effects of an item's being marked out-of-stock versus sold-out. We found that the consumers demonstrated different levels of loyalty based on whether the item was marked out-of-stock or sold-out. We discuss the strategic implications of our findings.

CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식 (Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network)

  • 손귀영;권순일
    • 정보처리학회 논문지
    • /
    • 제13권6호
    • /
    • pp.284-290
    • /
    • 2024
  • 음성감정인식(Speech Emotion Recognition, SER)은 사용자의 목소리에서 나타나는 떨림, 어조, 크기 등의 음성 패턴 분석을 통하여 감정 상태를 판단하는 기술이다. 하지만, 기존의 음성 감정인식 연구는 구현된 시나리오를 이용하여 제한된 환경 내에서 숙련된 연기자를 대상으로 기록된 음성인 구현발화를 중심의 연구로 그 결과 또한 높은 성능을 얻을 수 있지만, 이에 반해 자유발화 감정인식은 일상생활에서 통제되지 않는 환경에서 이루어지기 때문에 기존 구현발화보다 현저히 낮은 성능을 보여주고 있다. 본 논문에서는 일상적 자유발화 음성을 활용하여 감정인식을 진행하고, 그 성능을 향상하고자 한다. 성능평가를 위하여 AI Hub에서 제공되는 한국인 자유발화 대화 음성데이터를 사용하였으며, 딥러닝 학습을 위하여 1차원의 음성신호를 시간-주파수가 포함된 2차원의 스펙트로그램(Spectrogram)로 이미지 변환을 진행하였다. 생성된 이미지는 CNN기반 전이학습 신경망 모델인 VGG (Visual Geometry Group) 로 학습하였고, 그 결과 7개 감정(기쁨, 사랑스러움, 화남, 두려움, 슬픔, 중립, 놀람)에 대해서 성인 83.5%, 청소년 73.0%의 감정인식 성능을 확인하였다. 본 연구를 통하여, 기존의 구현발화기반 감정인식 성능과 비교하면, 낮은 성능이지만, 자유발화 감정표현에 대한 정량화할 수 있는 음성적 특징을 규정하기 어려움에도 불구하고, 일상생활에서 이루어진 대화를 기반으로 감정인식을 진행한 점에서 의의를 두고자 한다.

IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로 (A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation)

  • 강려은;양성병
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.169-196
    • /
    • 2017
  • 제4차 산업혁명의 도래로 IT(information technology)를 활용한 다양한 융합기술에 대한 관심이 높아지고 있으며, 이에 따른 고품질의 IT관련 교육서비스 제공의 필요성 및 중요성 또한 점차 증대되고 있다. 한편, 일반적인 교육서비스 품질 및 만족도에 관한 연구는 그 동안 다양한 맥락에서 활발히 진행된 바 있으나, IT교육 참가자를 대상으로 한 IT교육 서비스품질의 역할을 살펴본 연구는 상대적으로 부족한 것으로 파악된다. 이에 본 연구에서는 SERVPERF 모형 및 관련 선행연구를 바탕으로 IT교육 맥락에서 IT교육 서비스품질의 다섯 가지 차원(유형성, 신뢰성, 반응성, 확신성 및 공감성)을 도출하고, 이러한 세부 IT교육 서비스품질 요인이 학습자의 교육만족도, 나아가 현업적용의도 및 추천의도에 미치는 영향을 검증하였다. 또한, 이러한 영향이 학습자 직위(실무자 집단/관리자 집단) 및 참여동기(자발적 참여집단/비자발적 참여집단)에 따라 어떻게 달라지는지에 대한 추가분석도 실시하였다. 서울 소재 'M'교육기관 203명의 IT교육 참가자 대상 설문을 활용한 구조방정식모형 분석 결과, IT교육 서비스품질의 다섯 가지 차원 가운데 유형성, 신뢰성 및 확신성이 교육만족도에 유의한 영향을 주는 것으로 나타났으며, 이러한 교육만족도는 현업적용의도와 추천의도에도 유의한 영향을 주는 것으로 조사되었다. 또한, IT교육 서비스품질이 교육만족도에 미치는 영향 관계에서 학습자 직위 및 참여동기가 유의한 조절효과를 가진다는 사실을 확인하였다. 본 연구는 SERVPERF 모형을 활용하여 IT교육 맥락에서 IT교육 서비스품질의 영향력을 실증한 최초의 연구라는 점에서 학술적 의의가 있다. 본 연구결과가 IT교육 서비스 제공기관의 교육만족도 제고 및 효율적인 서비스 운영을 위한 실질적인 지침을 제공해 줄 수 있을 것으로 기대한다.