• Title/Summary/Keyword: e-plastic waste

Search Result 18, Processing Time 0.027 seconds

Use of e-plastic waste in concrete as a partial replacement of coarse mineral aggregate

  • Sabau, Marian;Vargas, Johnny R.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.377-384
    • /
    • 2018
  • The accelerated increase of the population growth rate in the world and the current lifestyle based on consumerism considerably increased the amount of waste generated by the human activity. Specifically, e-plastic waste causes significant damage to the environment because of its difficult degradation process. This paper aims to establish the feasibility of using e-plastic waste in concrete as a partial replacement of coarse mineral aggregate. Considering a control mix without e-plastic waste designed for a compressive strength of 21 MPa, tests on concrete mixes with 40, 50 and 60% of e-plastic waste aggregate to determine the fresh and hardened properties were carried out. A reduction in the compressive strength as the percentage of e-plastic waste increases was observed, the maximum reduction being 44% with respect to the control mix. In addition, a significant reduction as much as 22% in the density of the concrete mixes with e-plastic waste was recorded, which means that lighter elements can be produced with this type of concrete. Two new equations based on regression analysis of the experimental data from this study were proposed. These equations estimate the reduction in the compressive strength of concrete mixes with e-plastic waste aggregate at 14 and 28 days. A cost analysis and a practical alternative to introduce this waste material into the market are also presented.

Unconfined compressive strength of PET waste-mixed residual soils

  • Zhao, Jian-Jun;Lee, Min-Lee;Lim, Siong-Kang;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 2015
  • Plastic wastes, particularly polyethylene terephthalate (PET) generated from used bottled water constitute a worldwide environmental issue. Reusing the PET waste for geotechnical applications not only reduces environmental burdens of handling the waste, but also improves inherent engineering properties of soil. This paper investigated factors affecting shear strength improvement of PET-mixed residual soil. Four variables were considered: (i) plastic content; (ii) plastic slenderness ratio; (iii) plastic size; and (iv) soil particle size. A series of unconfined compression tests were performed to determine the optimum configurations for promoting the shear strength improvement. The results showed that the optimum slenderness ratio and PET content for shear strength improvement were 1:3 and 1.5%, respectively. Large PET pieces (i.e., $1.0cm^2$) were favorable for fine-grained residual soil, while small PET pieces (i.e., $0.5cm^2$) were favorable for coarse-grained residual soil. Higher shear strength improvement was obtained for PET-mixed coarse-grained residual soil (148%) than fine-grained residual soils (117%). The orientation of plastic pieces in soil and frictional resistance developed between soil particles and PET surface are two important factors affecting the shear strength performance of PET-mixed soil.

Potential Dioxin and Furan Sources from Hospital Solid Waste Streams : A Pilot Study

  • Lee, Byeong-Kyu;Fraso, Rafael-Moure;M
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.E
    • /
    • pp.13-21
    • /
    • 1995
  • This Pilot study identifies potential dioxin and furan sources and medical plastic wastes produced from hospital solid waste streams. In this study, air emissions of dioxins and furans from sources in the U.S., which were estimated by the U.S. Environmental Protection Agency (EPA), were summarized. Potential loading routes of dioxins and furans to the U.S.-Canada Great Lakes region have also been identified in trcent surveys. In addition, medical and hospital solid wastes produced in typical large city hospitals were characterized as important potential sources of dioxins and furans. Plastic contents in medical Plastics Characterization Survey (MMPCS), plastics composition data were obtained from a survey of five Massachusetts Hospitals and Medical Centers. By identifying plastic wastes as a percentage of total hospital wastes, we were able to use data from a preliminary study that analyzed the waste stream of 16 major New York City hospitals (NYCMWS) characterizing the plastic content of the wasters. This study determined the types of plastic wastes included in each medical waste stream (regulated medical waste or non regulated medical waste) and it discussed the potential for recyclibility of hospital plastic wastes. The combination of the NYCMWS and the MMPCS surveys provides for the first overview of the size of the recycling task of hospital plastic wastes and the potential of dioxin elimination if dioxin generating plastics were to be eliminated from hospital use.

  • PDF

Liquid-phase Thermal Degradation Properties of Waste Plastic Film (폐플라스틱 필름의 액상 열분해 특성에 관한 연구)

  • Hwang, T.S.;Kim, Y.S.;Kang, T.W.;Hwang, E.H.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.116-121
    • /
    • 2003
  • In this study, the thermal degradation process has been investigated at various reaction temperature$(350{\sim}400^{\circ}C)$ and times$(30{\sim}120\;min)$ in order to recycle waste plastic films as solid state wax. Waste plastic films were easily melted by adding a small amount of waxes. The effects of wax addition and nitrogen flow rate on their thermal degradation properties were investigated. FT-IR, GPC and viscometer were used to analyze properties of the solid wax including the structure, molicular weight distribution and melt viscosity. The average molecular weight of solid wax was decreased with increasing the reaction time, temperature and amount of wax added, Also, the viscosity of solid wax decreased with increasing the stirring speed at a constant reaction temperature and time, and its viscosity got close to zero above $390^{\circ}C$.

  • PDF

A Study on Physical Characteristics and Plastics Recycling of Used Small Household Appliances (폐소형가전의 물리적 성상 분석 및 플라스틱 재활용에 관한 연구)

  • Choi, Woo Zin;Park, Eun Kyu;Kang, Seok Hwan;Jung, Bam Bit;Kim, Soo Kyung
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Small household appliances such as electric rice cooker, a vacuum cleaner, an electric fan, etc. are diverse and complex due to the materials and components and waste streams from the manufacturing processes. In the present study, physical characterization of small e-wastes was analyzed on major items including electric rice cooker after manual dismantling. Small household appliances is an important potential source of waste plastic, however, recycling plastics from small e-waste is still unusual. The present communication gives results of separation processes on black plastics and the limitations of these sorting processes in used small household appliances.

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

Studies on the Preservation of Apples by Plastic Film Coating (Plastic Coating에 의(依)한 사과의 저장연구(貯藏硏究))

  • Park, Nou-Poung
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.131-151
    • /
    • 1970
  • A new method of plastic film coating has been investigated to extend storage life of apples. The film coating was effected by dipping fresh apples in a plastic emulsion. The effect of plastic film coating on the preservation of freshness, respiratory activities and chemical components during storage, has been investigated on four leading varieties of apples. The results are summarized as follows: 1. The effect of film coating on storage life of apples was apparent, resulting in delay of after-ripening, shriveling, softening or physiological impediment as well as reducing consumption of reserve materials and waste fruits. 2. Change in the partial pressure of gas, i.e., increase in carbon dioxide and decrease in oxygen in apple tissue was resulted by the plastic film coating, suggesting that the film deposited on the fruit interfered with the diffusion of gases formed therein. 3. The effects of plastic film coating on the fruit storage varied with the type of plastic emulsions, coating temperature, varieties of apples and degree of fruit ripening. As regard to apple varieties, good results were obtained with PVA 217 for both American Summer Pearmain and Jonathan, and PVC 443 for McIntosh. 4. Reduction in the diminution rates of L-malic acid, ascorbic acid and soluble pectin etc. during storage of apples may account for the improved storage life of the fruits treated with plastic films.

  • PDF

A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste (방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF

A Basic Study on Sorting of Black Plastics of Waste Electrical and Electronic Equipment (WEEE) (폐가전의 검정색 플라스틱 재질선별에 관한 기초 연구)

  • Park, Eun Kyu;Jung, Bam Bit;Choi, Woo Zin;Oh, Sung Kwun
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • Used small household appliances(small e-waste) consists of a variety of complex materials and components. The small e-waste is mainly composed of plastics and an important potential source of waste plastic. The black plastics, particularly are very difficult to separate by resin type and therefore these are mainly recycled in the form of a mixtures. In the present study, the sorting technologies such as gravity and electro static separation, near-infrared ray(NIR) and IR/Raman optical sorting separation on mixture of black plastics were analyzed and their limitations on sorting process were also investigated. The Laser Induced Breakdown Spectroscopy(LIBS) spectrum of each black plastics was used for identification of black plastics by resin type, and after analyzing the normalization operation, Principal Component Analysis(PCA) was carried out. The spectrum data was optimized through PCA process. In order to improve the identification accuracy and sorting efficiency of black plastics, it is necessary to design a classifier with high efficiency and to improve the performance and reliability of the classifier by applying the field of intelligent algorithms.

Current Status of Plastic Recycling in Korea (국내 플라스틱 리싸이클링 현황)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.3-8
    • /
    • 2019
  • Recently, plastic waste in Korea has been recognized as a critical issue due to an increase in massive production of plastics, difficulty in disposal of waste plastics, and public recognition of toxicity in micro-plastics, etc. To resolve those problems, the regulation to reduce plastics consumption may be primarily considered but, in this case, clarification should be made on the rationales and the action plans in the regulation for individual waste plastic items. Another problem is the small capital sizes of domestic recycling companies, which leads to poor R&D capacity, low recycling yields and thus lowering values of recycling items. This adversely affects consumers' perception. The R&D toward recycling technical progress should take into account the environmental friendliness and recyclability from the early product design stages. Certainly, this should be supported in governmental policy and public action plans. In addition, by referring to advanced policies of i.e. European Union, the recycling industry should be recognized as an opportunity toward new investment & employment. If necessary, the regulation of plastic consumption through a formal evaluation process such as Life Cycle Assessment (LCA) will also be helpful. The values of recycled plastics should be improved through the identification and elimination of harmful chemical substances potentially contained in the products.