• Title/Summary/Keyword: e-marketing

Search Result 1,064, Processing Time 0.025 seconds

A Study on Interactions of Competitive Promotions Between the New and Used Cars (신차와 중고차간 프로모션의 상호작용에 대한 연구)

  • Chang, Kwangpil
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.83-98
    • /
    • 2012
  • In a market where new and used cars are competing with each other, we would run the risk of obtaining biased estimates of cross elasticity between them if we focus on only new cars or on only used cars. Unfortunately, most of previous studies on the automobile industry have focused on only new car models without taking into account the effect of used cars' pricing policy on new cars' market shares and vice versa, resulting in inadequate prediction of reactive pricing in response to competitors' rebate or price discount. However, there are some exceptions. Purohit (1992) and Sullivan (1990) looked into both new and used car markets at the same time to examine the effect of new car model launching on the used car prices. But their studies have some limitations in that they employed the average used car prices reported in NADA Used Car Guide instead of actual transaction prices. Some of the conflicting results may be due to this problem in the data. Park (1998) recognized this problem and used the actual prices in his study. His work is notable in that he investigated the qualitative effect of new car model launching on the pricing policy of the used car in terms of reinforcement of brand equity. The current work also used the actual price like Park (1998) but the quantitative aspect of competitive price promotion between new and used cars of the same model was explored. In this study, I develop a model that assumes that the cross elasticity between new and used cars of the same model is higher than those amongst new cars and used cars of the different model. Specifically, I apply the nested logit model that assumes the car model choice at the first stage and the choice between new and used cars at the second stage. This proposed model is compared to the IIA (Independence of Irrelevant Alternatives) model that assumes that there is no decision hierarchy but that new and used cars of the different model are all substitutable at the first stage. The data for this study are drawn from Power Information Network (PIN), an affiliate of J.D. Power and Associates. PIN collects sales transaction data from a sample of dealerships in the major metropolitan areas in the U.S. These are retail transactions, i.e., sales or leases to final consumers, excluding fleet sales and including both new car and used car sales. Each observation in the PIN database contains the transaction date, the manufacturer, model year, make, model, trim and other car information, the transaction price, consumer rebates, the interest rate, term, amount financed (when the vehicle is financed or leased), etc. I used data for the compact cars sold during the period January 2009- June 2009. The new and used cars of the top nine selling models are included in the study: Mazda 3, Honda Civic, Chevrolet Cobalt, Toyota Corolla, Hyundai Elantra, Ford Focus, Volkswagen Jetta, Nissan Sentra, and Kia Spectra. These models in the study accounted for 87% of category unit sales. Empirical application of the nested logit model showed that the proposed model outperformed the IIA (Independence of Irrelevant Alternatives) model in both calibration and holdout samples. The other comparison model that assumes choice between new and used cars at the first stage and car model choice at the second stage turned out to be mis-specfied since the dissimilarity parameter (i.e., inclusive or categroy value parameter) was estimated to be greater than 1. Post hoc analysis based on estimated parameters was conducted employing the modified Lanczo's iterative method. This method is intuitively appealing. For example, suppose a new car offers a certain amount of rebate and gains market share at first. In response to this rebate, a used car of the same model keeps decreasing price until it regains the lost market share to maintain the status quo. The new car settle down to a lowered market share due to the used car's reaction. The method enables us to find the amount of price discount to main the status quo and equilibrium market shares of the new and used cars. In the first simulation, I used Jetta as a focal brand to see how its new and used cars set prices, rebates or APR interactively assuming that reactive cars respond to price promotion to maintain the status quo. The simulation results showed that the IIA model underestimates cross elasticities, resulting in suggesting less aggressive used car price discount in response to new cars' rebate than the proposed nested logit model. In the second simulation, I used Elantra to reconfirm the result for Jetta and came to the same conclusion. In the third simulation, I had Corolla offer $1,000 rebate to see what could be the best response for Elantra's new and used cars. Interestingly, Elantra's used car could maintain the status quo by offering lower price discount ($160) than the new car ($205). In the future research, we might want to explore the plausibility of the alternative nested logit model. For example, the NUB model that assumes choice between new and used cars at the first stage and brand choice at the second stage could be a possibility even though it was rejected in the current study because of mis-specification (A dissimilarity parameter turned out to be higher than 1). The NUB model may have been rejected due to true mis-specification or data structure transmitted from a typical car dealership. In a typical car dealership, both new and used cars of the same model are displayed. Because of this fact, the BNU model that assumes brand choice at the first stage and choice between new and used cars at the second stage may have been favored in the current study since customers first choose a dealership (brand) then choose between new and used cars given this market environment. However, suppose there are dealerships that carry both new and used cars of various models, then the NUB model might fit the data as well as the BNU model. Which model is a better description of the data is an empirical question. In addition, it would be interesting to test a probabilistic mixture model of the BNU and NUB on a new data set.

  • PDF

The Effect of Brand Extension of Private Label on Consumer Attitude - a focus on the moderating effect of the perceived fit difference between parent brands and an extended brand - (PL의 브랜드확장이 소비자태도에 미치는 영향에 관한 연구 : 모브랜드 적합도 인식 차이의 조절효과를 중심으로)

  • Kim, Jong-Keun;Kim, Hyang-Mi;Lee, Jong-Ho
    • Journal of Distribution Research
    • /
    • v.16 no.4
    • /
    • pp.1-27
    • /
    • 2011
  • Introduction: Sales of private labels(PU have been growing m recent years. Globally, PLs have already achieved 20% share, although between 25 and 50% share in most of the European markets(AC. Nielson, 2005). These products are aimed to have comparable quality and prices as national brand(NB) products and have been continuously eroding manufacturer's national brand market share. Stores have also started introducing premium PLs that are of higher-quality and more reasonably priced compared to NBs. Worldwide, many retailers already have a multiple-tier private label architecture. Consumers as a consequence are now able to have a more diverse brand choice in store than ever before. Since premium PLs are priced higher than regular PLs and even, in some cases, above NBs, stores can expect to generate higher profits. Brand extensions and private label have been extensively studied in the marketing field. However, less attention has been paid to the private label extension. Therefore, this research focuses on private label extension using the Multi-Attribute Attitude Model(Fishbein and Ajzen, 1975). Especially there are few studies that consider the hierarchical effect of the PL's two parent brands: store brand and the original PL. We assume that the attitude toward each of the two parent brands affects the attitude towards the extended PL. The influence from each parent brand toward extended PL will vary according to the perceived fit between each parent brand and the extended PL. This research focuses on how these two parent brands act as reference points to one another in the consumers' choice consideration. Specifically we seek to understand how store image and attitude towards original PL affect consumer perceptions of extended premium PL. How consumers perceive extended premium PLs could provide strategic suggestions for retailer managers with specific suggestions on whether it is more effective: to position extended premium PL similarly or dissimilarly to original PL especially on the quality dimension and congruency with store image. There is an extensive body of research on branding and brand extensions (e.g. Aaker and Keller, 1990) and more recently on PLs(e.g. Kumar and Steenkamp, 2007). However there are no studies to date that look at the upgrading and influence of original PLs and attitude towards store on the premium PL extension. This research wishes to make a contribution to this gap using the perceived fit difference between parent brands and extended premium PL as the context. In order to meet the above objectives, we investigate which factors heighten consumers' positive attitude toward premium PL extension. Research Model and Hypotheses: When considering the attitude towards the premium PL extension, we expect four factors to have an influence: attitude towards store; attitude towards original PL; perceived congruity between the store image and the premium PL; perceived similarity between the original PL and the premium PL. We expect that all these factors have an influence on consumer attitude towards premium PL extension. Figure 1 gives the research model and hypotheses. Method: Data were collected by an intercept survey conducted on consumers at discount stores. 403 survey responses were attained (total 59.8% female, across all age ranges). Respondents were asked to respond to a series of Questions measured on 7 point likert-type scales. The survey consisted of Questions that measured: the trust towards store and the original PL; the satisfaction towards store and the original PL; the attitudes towards store, the original PL, and the extended premium PL; the perceived similarity of the original PL and the extended premium PL; the perceived congruity between the store image and the extended premium PL. Product images with specific explanations of the features of premium PL, regular PL and NB we reused as the stimuli for the Question response. We developed scales to measure the research constructs. Cronbach's alphaw as measured each construct with the reliability for all constructs exceeding the .70 standard(Nunnally, 1978). Results: To test the hypotheses, path analysis was conducted using LISREL 8.30. The path analysis for verification of the model produced satisfactory results. The validity index shows acceptable results(${\chi}^2=427.00$(P=0.00), GFI= .90, AGFI= .87, NFI= .91, RMSEA= .062, RMR= .047). With the increasing retailer use of premium PLBs, the intention of this research was to examine how consumers use original PL and store image as reference points as to the attitude towards premium PL extension. Results(see table 1 & 2) show that the attitude of each parent brand (attitudes toward store and original pL) influences the attitude towards extended PL and their perceived fit moderates these influences. Attitude toward the extended PL was influenced by the relative level of perceived fit. Discussion of results and future direction: These results suggest that the future strategy for the PL extension needs to consider that positive parent brand attitude is more strongly associated with the attitude toward PL extensions. Specifically, to improve attitude towards PL extension, building and maintaining positive attitude towards original PL is necessary. Positioning premium PL congruently to store image is also important for positive attitude. In order to improve this research, the following alternatives should also be considered. To improve the research model's predictive power, more diverse products should be included in study. Other attributes of product should also be included such as design, brand name since we only considered trust and satisfaction as factors to build consumer attitudes.

  • PDF

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.

A Study on Regulation of Video on Demand Advertisements (주문형서비스(Video on Demand) 광고 규제에 관한 연구)

  • Cho, Dae-keun;Kim, Ki-youn
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.145-159
    • /
    • 2016
  • This study points out the problems of absence of the legislation for standard regulation on Video on Demand(VoD) advertisement which grows so fast lately, for this it recommends making legal references, which have the definition of non-linear broadcasting & VoD advertisement and VoD advertisement standard regulation in the merged Broadcasting Act, and adopting co-regulation system. Pay TV operators providing VoD service have the opportunities to make money as subscribers uses it increasingly. In case of linear service, the Broadcasting Act regulates the advertisement strictly, but not the VoD ads. The reason why is that Korean legislation including the Broadcasting Act does not have legal reference to regulate it, instead of that, it rely on the self-regulation system which is operated by pay-tv players who provide the VoD ads. So, there is the limitation to protect the minors such as children and youth from the harmful VoD ads, to be invulnerable for advertisers to influence to advertising agents, and to ensure the regulatory effectiveness under player-centric self-regulatory regime. In this context, this study analyses the how to regulate VoD ads standard with a three-pronged approach. First, it analyses the VoD ads regulation system in overseas countries, UK, Canada, EU and Ireland. Each country has the legal reference to regulate it in the Broadcasting Act or lower statures and adopts the co-regulatory regime the NRA and the 3rd entity operate together. Second, it reviews the objectives and scope of VoD ads standard. This study recommends that the objective of it is users protection and the scope of it is standard regulation not commercial practice. Third, this study researches how to legislate for regulation of VoD ads standard. Considering VoD service's characteristics(non-linear service) and legal position of Ads agency(i.e. pay tv operators), it suggest that legal reference will be in the integrated Broadcasting bill, which is the general law, not individual. If it is available to regulate VoD ads standard with co-regulatory regime, it expects the enhancement of user protection from the harmful VoD ads and make up sustainability of the pay-tv players' self-regulation.

The Influence of Store Images of Discount Stores on Shopping Values and Shopping Satisfaction: The Roles of Perceived Retail Crowding (대형마트의 점포이미지가 쇼핑가치 및 쇼핑만족에 미치는 영향: 지각된 혼잡의 역할)

  • Bae, Byung-Ryul
    • Journal of Distribution Research
    • /
    • v.17 no.4
    • /
    • pp.1-27
    • /
    • 2012
  • Conceptualization of store image have been suggested in the past by many marketing scholars. The dominant perspective about store image is treated as the results of a multi-attribute model. Store image is expressed as a function of the salient attributes of a particular store that are evaluated. Though, there is a little confusions about what elements compose the store image, most scholars agree that merchandise, service, atmosphere, physical facilities, comfort, and location are generally accepted elements as store image. A considerable researches support that shopping can provide both hedonic and utilitarian value. Hedonic shopping value reflects the value received from fantasy and emotive aspects of shopping experience, while utilitarian shopping value reflects the acquisition of products. These two types of shopping value can affect shopping satisfaction. This study examines the relationships among stores images(store atmosphere, salespeople services, facilities, product assortment, and store location), shopping values(utilitarian shopping value and hedonic shopping value), and shopping satisfaction based on discount stores (E-Mart, Home plus, and Lotte Mart). The author hypothesized that five store image components affect shopping values, and these shopping values affect shopping satisfaction. The author focused on the roles of perceived retail crowding between these relationships. Specifically, the author hypothesized that perceived retailing crowding moderated the relationship between shopping values and shopping satisfaction. The author also hypothesized the direct effect of perceived retail crowding on shopping satisfaction. Finally, the author hypothesized that five store image components affect directly shopping satisfaction. Research model is presented in

    . To test model and hypotheses, data were collected from 114 consumers located mid-size city in local area. The author employs PLS methodology (SmartPLS 2.0) to test hypotheses. Data analysis results indicate that among five store images salespeople services, and store location affect utilitarian shopping value. Store atmosphere, salespeople services, and store location affect hedonic shopping value. Two shopping values affect shopping satisfaction. Hedonic shopping value affect more shopping satisfaction than utilitarian shopping value. Data analysis results is presented in . The author examines the moderating effects of perceived retail crowding between shopping values and shopping satisfaction. Results indicate that there are no moderating effects between shopping values and shopping satisfaction. Moderating effects of perceived retail crowding between utilitarian shopping value and shopping satisfaction are presented in
    . Moderating effects of perceived retail crowding between hedonic shopping value and shopping satisfaction is presented in . The author examines the direct effect of perceived retail crowding on shopping satisfaction. Results are presented in
    . The author analyzed the relationship between perceived retail crowding and shopping satisfaction using WarpPLS 3.0 which can analyze the non-linear relationship. Result indicates that perceived retail crowding affects directly shopping satisfaction and there is a non-linear relationship between them. Among five store image components, store atmosphere and salespeople services affect directly shopping satisfaction. The author describes about the managerial implications, limitations, and future research issues.

  • PDF
  • A Study on the Effects of Meterological Factors on the Distribution of Agricultural Products: Focused on the Distribution of Chinese Cabbages (기상요인이 농산물 유통에 미치는 영향에 관한 연구: 배추 유통 사례를 중심으로)

    • Lee, Hyunjoung;Hong, Jinhwan
      • Journal of Distribution Research
      • /
      • v.17 no.5
      • /
      • pp.59-83
      • /
      • 2012
    • Agriculture is a primary industry that influenced by the weather or meterological factors more than other industry. Global warming and worldwide climate changes, and unusual weather phenomena are fatal in agricultural industry and human life. Therefore, many previous studies have been made to find the relationship between weather and the productivity of agriculture. Meterological factors also influence on the distribution of agricultural product. For example, price of agricultural product is determined in the market, and also influenced by the weather of the market. However, there is only a few study was made to find this link. The objective of this study is to investigate the effects of meterological factors on the distribution of agricultural products, focusing on the distribution of chinese cabbages. Chinese cabbage is a main ingredient of Kimchi, and basic essential vegetable in Korean dinner table. However, the production of chinese cabbages is influenced by weather and very fluctuating so that the variation of its price is so unstable. Therefore, both consumers and farmers do not feel comfortable at the unstable price of chinese cabbages. In this study, we analyze the real transaction data of chinese cabbage in wholesale markets and meterological factors depending on the variety and geography. We collect and analyze data of meterological factors such as temperatures, humidity, cloudiness, rainfall, snowfall, wind speed, insolation, sunshine duration in producing and consuming region of chinese cabbages. The result of this study shows that the meterological factors such as temperature and humidity significantly influence on the volume and price of chinese cabbage transaction in wholesale market. Especially, the weather of consuming region has greater correlation effects on transaction than that of producing region in all types of chinese cabbages. Among the whole agricultural lifecycle of chinese cabbages, 'seeding - harvest - shipment - wholesale', meterological factors such as temperature and rainfall in shipment and wholesale period are significantly correlated with transaction volume and price of crops. Based on the result of correlation analysis, we make a regression analysis to verify the meterological factors' effects on the volume and price of chines cabbage transaction in wholesale market. The results of stepwise regression analysis are shown in

    and
    . The type of chinese cabbages are categorized by 5 types, i.e. alpine, gimjang for winter, spring, summer, and winter crop, and all of the regression models are shown significant relationship. In addition, meterological factors in shipment and wholesale period are entered more in regression model than those in seeding and harvest period. This result implies that weather in consuming region is also important in the distribution of chinese cabbages. Based on the result of this study, we find several implications and recommendations for policy makers of agricultural product distribution. The goal of agricultural product distribution policy is to insure proper price and production cost for farmers and provide proper price and quality, and stable supply for consumers. Therefore, coping with the uncertainty of weather is very essential to make a fruitful effect of the policy. In reality, very big part of consumer price of chinese cabbage is made up of the margin of intermediaries, because they take the risk. In addition, policy makers make efforts for farmers to utilize AWIS (Agricultural Weather Information System). In order to do that, it should integrate the relevant information including distribution and marketing as well as production. Offering a consulting service to farmers about weather management is also expected to be a good option in agriculture and weather industry. Reflecting on the result of this study, the distribution authorities can offer the guideline for the timing and volume of harvest, and it is expected to contribute to the stable equilibrium of supply and demand of agricultural products.

  • PDF
  • Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

    • An, Jungkook;Kim, Hee-Woong
      • Journal of Intelligence and Information Systems
      • /
      • v.21 no.2
      • /
      • pp.49-67
      • /
      • 2015
    • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

    Personification of On-line Shopping Mall -Focusing on the Social Presence- (온라인 쇼핑몰의 의인화 전략 -사회적 실재감을 중심으로-)

    • Park, Ju-Sik
      • Management & Information Systems Review
      • /
      • v.31 no.2
      • /
      • pp.143-172
      • /
      • 2012
    • While e-commerce market(B2C) grows rapidly, many experts argue that EC(B2C) transactions have not reached its full potential. A notable difference between online and offline consumer markets that is suppressing the growth of EC(B2C) is the decreased presence of human and social elements in the online shopping environments. Generally online shopping lacks human warmth and sociability. In this study, social presence in online shopping mall was proposed as a substitute for face-to-face social interaction in the traditional commerce and author explored what variables affect social presence(human warmth and sociability) on online shopping malls and how human warmth and sociability can influence on online store loyalty. To achieve research objectives, we reviewed literatures related with marketing, psychology and communication research areas. Based on literature review, we proposed a research model on the online shopping mall. To examine the proposed research model, we gathered data by using a self-report questionnaire. Respondents consists of online shoppers with at least five or more times of purchase experience in online shopping malls. Because social presence is a feeling which needs frequent contacts with malls to experience, respondents must have enough purchase experiences. The empirical results are as follows : First, shopping mall's customization efforts influence perceived social presence on the mall significantly. Second, shopping mall's responsiveness influences perceived social presence significantly. Third, perceived activity of community of online shopping mall influences perceived social presence significantly. Mall managers have to activate their customer community to reinforce social presence, resulting in trust building. Finally, perceived social presence influences trust and enjoyment on the mall significantly. And then trust and enjoyment on the mall affect store loyalty significantly. From these findings it can be inferred that perceived social presence appears determinant which is critical to the formation of core variables(trust and loyalty) in existing online shopping papers.

    • PDF

    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.