• Title/Summary/Keyword: e-coating

Search Result 593, Processing Time 0.032 seconds

The Fabrication of Implant Core Coated with Ti Balls (Ti ball이 coating된 임플란트 core의 제조)

  • Choi, D.J.;Park, D.G.;Park, S.B.;Park, S.S.;Turaev, F.R.;Roh, J.S.;Kim, S.J.;Woo, H.S.;Kim, S.E.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • The implant prototypes with various porosities were fabricated by Spark Plasma Sintering of atomized spherical titanium balls. The interface was observed by optical microscope. Sintering temperature and holding time were selected at the point of big change of Z-axis ratio during sintering. These experiments show that Spark Plasma Sintering of spherical titanium balls can be efficiently used to produce implants surfaced with titanium balls with various porosities in a short time less than 120 seconds by manipulating the current condition such as z-axis, temperature and balls size.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Preparation of Poly(vinyl chloride)-graft-poly(styrene sulfonic acid) Composite Nanofiltration Membranes (폴리비닐클로라이드-그래프트-폴리스티렌 술폰산 복합 나노막 제조)

  • Kim, Jong-Hak;Park, Jung-Tae;Koh, Joo-Hwan;Roh, Dong-Kyu;Seo, Jin-Ah
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • Nanofiltration membranes were prepared based on coating a sulfonated comb-like copolymer layer on top of a poly(vinylidene fluoride) (PVDF) support. The comb-like copolymer comprising poly(vinyl chloride) backbone and poly(styrene sulfonic acid) side chains, i.e. PVC-g-PSSA was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. The successful synthesis of graft copolymers were confirmed by nuclear magnetic resonance ($^1H$-NMR), FT-IR spectroscopy and wide angle X-ray scattering (WAXS). Composite nanofiltration membranes consisting PVC-g-PSSA as a top layer exhibited the increase of both rejections and solution flux with increasing PSSA concentration. This performance enhancement is presumably due to the increase of SO3H groups and membrane hydrophilicity. The rejections of composite membranes containing 71 wt% of PSSA were 88% for $Na_2SO_4$ and 33% for NaCl, and the solution flux were 26 and $34L/m^2h$, respectively, at 0.3 MPa pressure.

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • Min, Hyeong-Seop;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

FAST QUANTITATIVE AND QUALITATIVE ANALYSIS OF PHARMACEUTICAL TABLETS BY NIR

  • Nielsen, Line-Lundsberg;Charlotte Kornbo;Mette Bruhn
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3111-3111
    • /
    • 2001
  • The implementation of NIR and chemometrics in the Pharmaceutical industries is still in strong progress, both regarding qualitative and quantitative applications and beneficial results are seen. Looking at the development so far, NIR will change the pharmaceutical industry even more in the future. This presentation will address the experiences and progress achieved regarding the application and implementation of quantitative methods for determination of content uniformity and assay of tablets with less than 10% w/w of active, using Near Infrared transmittance spectroscopy in combination with PLS. Also qualitative methods for identification of the same tablets by Near Infrared reflectance spectroscopy will be discussed. Four commercial tablet strengths are formulated and produced from two different compositions by direct compression. Three different strengths are dose proportional, i.e. fixed concentration by varying in size. The aim was to replace the conventional primary methods for analysing content uniformity, assay and identification by NIR. Studies were performed on comparing transmittance versus reflectance spectroscopy for both applications on the dose proportional tablets. The model for determination of content uniformity and assay was developed to cover both coated and uncoated tablets, whereas the qualitative model was developed to identify coated tablets only. The impact of the tablet formulation, tablet size and coating, resulted in individual models far each composition The best calibration was achieved using diffuse reflectance for the identification purposes and diffuse transmittance for the quantitative determination of the active content within the tablets. As NIR in combination with other techniques opens up the possibility of total quality management within the production, the transfer of the above-mentioned models from a laboratory based approach to an at-line approach at H.Lundbeck will be addressed too.

  • PDF

Low Temperature Sintering of BNKT Lead-Free Piezoelectric Ceramics Using CuO-Coated Na0.5Bi4.5Ti4O15 Templates (산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구)

  • Jeong, Gwang-Hwi;Lee, Sang-Seop;Ahn, Chang Won;Han, Hyoung Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study investigated the low temperature sintering with various templates of Bi-based lead-free piezoelectric ceramics. The effects of using CuO-coated Na0.5Bi4.5Ti4O15 templates on the sintering behavior as well as the dielectric, ferroelectric, and piezoelectric properties of Bi1/2(Na0.78K0.22)1/2TiO3 (BNKT) ceramics have been examined. In comparison with the specimens sintered with the Na0.5Bi4.5Ti4O15 templates without CuO coating, those sintered with the CuO-coated Na0.5Bi4.5Ti4O15 templates showed larger template sizes as well as a larger electric field induced strain (Smax/Emax) of 422 pm/V after sintering at temperatures as low as 975℃. These results are promising for low-cost multilayer ceramic actuator applications.

Design of Supramolecular Electrolytes for Solid State Dye-sensitized Solar Cells (고체형 염료감응 태양전지용 초분자 전해질 개발)

  • Koh, Jong-Kwan;Koh, Joo-Hwan;Seo, Jin-Ah;Kim, Jong-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.24-27
    • /
    • 2009
  • Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches $8.5{\times}10^{-5}$ S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of $TiO_2$ nanoporous layer, due to the connection of $TiO_2$ nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5 % and 0.5 %, respectively, at 100 $mW/cm^2$, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7 % upon introduction of poly(ethylene glycol dimethyl ether) (PEGDME) with 500 g/mol.

  • PDF

Experimental study on the Organic Ferroelectric Thin Film on Paper Substrate (유기 강유전 박막의 종이기판 응용가능성 검토)

  • Park, Byung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2131-2134
    • /
    • 2015
  • In this study, It has been demonstrated a new and realizable possibility of the ferroelectric random access memory devices by all solution processing method with paper substrates. Organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) thin films were formed on paper substrate with Al electrode for the bottom gate structure using spin-coating technique. Then, they were subjected to annealing process for crystallization. The fabricated PVDF-TrFE thin films were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found from polarization versus electric field (P-E) measurement that a PVDF-TrFE thin film on paper substrate showed very good ferroelectric property. This result agree well with that of a PVDF-TrFE thin film fabricated on the rigid Si substrate. It anticipated that these results will lead to the emergence of printable electron devices on paper. Furthermore, it could be fabricated by a solution processing method for ferroelectric random access memory device, which is reliable and very inexpensive, has a high density, and can be also fabricated easily.

Interfacial bonding Energy between Laser Surface Treated HA layer and Ti alloy (레이저 표면처리에 의한 수산화아파타이트 코팅된 타이타니움합금 경계면의 결합에너지)

  • Moon, D.S.;Kim, Y.K.;Nam, S.Y.;Cho, H.S.;Huh, E.J.;Kim, S.Y.;Lee, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.35-38
    • /
    • 1997
  • The interfacial bonding energy between laser surface treated HA layer and Ti alloy substrate was investigated using a mechanical push-out tester. The initial slope of shear-stress and reduced displacement curves, maximum interfacial bond strength and bonding energy were calculated from results of the push-out test. The calculated initial slpoes are 38 MPa for the Ti alloy(A), 65 MPa for the sandblast finished specimen(B), 95 MPa for the HA plasma spray coated specimen and 49 MPa for the laser surface treated specimen(D). The maximum interfacial bonding strength are 3 MPa for the A, 19 MPa for the B, 20 MPa for the C, 10 MPa for the D. The interfacial bonding energies are $3.3\times10^{-9}J/mm^2$ for the A, $15.5\times10^{-9}J/mm^2$ for the B, $15.6\times10^{-9}J/mm^2$ for the C and $18.3\times10^{-9}J/mm^2$ for the D. Microscopic observation shows that the breaking of the laser treated specimen had been occured through the boundary between HA layer and polymer resin, but the untreated specimen had been occured through the inside of HA coating layer.

  • PDF

Study on the temperature and optical wavelength sensing composites as smart materials (온도 및 광파장을 감지하는 스마트 복합재료에 관한 연구)

  • ;Delbert E. Day;James O. Stoffer
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.439-448
    • /
    • 1996
  • The possibility of application or the transparent BK10 glass fiber/PMMA composites as a temperature-or wavelength-sensors was studied. Measurement of diameter and refractive index for glass fibers to be reinforced to PMMA as a function of drawing speed and temperature was done and the appropriate coating methods and solvent for coupling agent was researched. $T_{max%}$ value at which the maximum transmission for the composites occurs could be controlled to be in $31~50^{\circ}C$ by the processing factors such as fiber diameter, fiber vol%, molecular wt. of PMMA. Furthermore, with different wavelength other than 589.3 nm, the $T_{max%}$ value could be controlled to be in $35~55^{\circ}C$. For the sensibility of wavelength for the composites, there was not a wavelength ($\lamda_{max%}$) showing maximum transmission.

  • PDF