• Title/Summary/Keyword: e-AIRS

Search Result 17, Processing Time 0.022 seconds

Web-based Fluid Dynamics Education using e-AIRS System (e-AIRS 환경을 활용한 웹기반의 유체역학 교육)

  • Kim, J.H.;Yi, J.S.;Ko, S.H.;Kim, C.;Kim, Y.H.;Moon, J.B.;Cho, K.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.212-215
    • /
    • 2008
  • e-AIRS, an abbreviation of 'e-Science Aerospace Integrated Research System,' is a virtual organization supporting CFD(computational fluid dynamics) simulations, remote experimental service, and collaborative and integrative study between computation and experiment. e-AIRS works on the e-Science environment and research process is accomplished through the web portal. By the system development since 2005, a stable education system with the full support on fluid dynamics is successfully established and utilized to various fluid dynamic lectures in universities. By using e-AIRS system during a lecture, students can conduct the full CFD simulation process on the web and inspect the wind tunnel experiment via Access Grid. This kind of interactive lecture makes students to have a deeper understanding on the physics of fluid, as well as the characteristics of numerical techniques. The current paper will describe system components of e-AIRS and its utilization on education.

  • PDF

e-AIRS: Construction of an Aerodynamic Integrated Research System on the e-Science Infrastructure (e-AITS: e-Science 인프라 기반의 항공우주 공력통합연구 환경구축)

  • Kim, Jin-Ho;Yi, Jun-Sok;Ko, Soon-Heum;Ahn, Jae-Wan;Kim, Chong-Am;Kim, Yoon-Hee;Cho, Kum-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.428-437
    • /
    • 2008
  • e-AIRS, an abbreviation of ‘e-Aerospace Integrated Research System’, is a virtual organization designed to support the aerospace engineering processes in the e-Science environment. As the first step toward a virtual aerospace engineering organization, the e-AIRS intends to give a full support to aerodynamic research processes. Currently, the e-AIRS can handle both the computational and experimental aerodynamic researches on the e-Science infrastructure. In detail, users can conduct the full CFD(Computational Fluid Dynamics) research processes, request wind tunnel experiments, perform the comparative analysis between computational and experimental resultants and finally collaborate with other researchers using the web portal. The current paper will describe those functions and the internal architecture of the e-AIRS system.

Web based CFD Simulation Service Improvement and Utilization (웹기반 열유체 시뮬레이션 서비스의 개선 및 활용)

  • Jung, Young Jin;Jin, Du-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1160-1167
    • /
    • 2013
  • Web based simulation service is utilized to computationally analyze various phenomena in real world according to the progress of network and computing technology. In this paper, we present an improvement and utilization of e-AIRS (e-Science Aerospace Integrated Research System). e-AIRS, has been utilized to support web based CFD simulation service since 2008. has some problems such as stable system, pre processing, post processing. To solver this problem, we improved e-AIRS such as distributed service processing, personal simulation job assignment control, and faster data loading. After improvement, although users increase from 110 to 606, the priority of user requirements is changed from stable system to pre/post processor. User requirements and statistics about e-AIRS simulation service for each semester is analyzed to support more stable and comfortable service.

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

Development of Web-based High Throughput Computing Environment and Its Applications (웹기반 대용량 계산환경 구축 및 응용사례)

  • Jeong, Min-Joong;Kim, Byung-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.719-724
    • /
    • 2007
  • Many engineering problems often require the large amount of computing resources for iterative simulations of problems treating many parameters and input files. In order to overcome the situation, this paper proposes an e-Science based computational system. The system exploits the Grid computing technology to establish an integrated web service environment which supports distributed high throughput computational simulations and remote executions. The proposed system provides an easy-to-use parametric study service where a computational service includes real time monitoring. To verify usability of the proposed system, two kinds of applications were introduced. The first application is an Aerospace Integrated Research System (e-AIRS). The e-AIRS adapts the proposed computational system to solve CFD problems. The second one is design and optimization of protein 3-dimensional structures.

  • PDF

Development of Web-based High Throughput Computing Environment and Its Applications (웹기반 대용량 계산환경 구축 및 응용연구)

  • Jeong, Min-Joong;Kim, Byung-Sang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.365-370
    • /
    • 2007
  • Many engineering problems often require the large amount of computing resources for iterative simulations of problems treating many parameters and input files. In order to overcome the situation, this paper proposes an e-Science based computational system. The system exploits the Grid computing technology to establish an integrated web service environment which supports distributed high throughput computational simulations and remote executions. The proposed system provides an easy-to-use parametric study service where a computational service includes real time monitoring. To verify usability of the proposed system, two kinds of applications were introduced. The first application is an Aerospace Integrated Research System (e-AIRS). The e-AIRS adapts the proposed computational system to solve CFD problems. The second one is design and optimization of protein 3-dimensional structures in structural biology.

THE EXTRACTION OF THE THERMAL RADIATION ASSOCIATED WITH GREENHOUSE GASES FROM AIRS MEASUREMENTS

  • Kwon, Eun-Han;Kim, Yong-Seung;Lee, Sun-Gu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.301-304
    • /
    • 2006
  • For the purpose of investigating the contributions of various gases to climate change, the thermal radiation associated with greenhouse gases are extracted from AIRS (Atmospheric Infrared Sounder) infrared radiances over the tropical pacific region. AIRS instrument which was launched on the EOS-Aqua satellite in May 2002 covers the spectral range from 650 cm-1 to 2700 cm-1 with a spectral resolution of between 0.4 cm-1 and 1 cm-1. In order to extract the thermal radiation absorbed by individual gases, the interfering background radiances at the top of the atmosphere are simulated using the radiative transfer code MODTRAN (MODerate spectral resolution atmospheric TRANsmittance). The simulations incorporated the temperature and water vapor profiles taken from NCEP (National Centers for Environmental Prediction) reanalyses. The differences between the simulated background radiance and AIRS-measured radiance result in the absorption of upward longwave radiation by atmospheric gases (i.e. greenhouse effect). The extracted absorption bands of individual gases will allow us to quantify the radiative forcing of individual greenhouse gases and thus those data will be useful for climate change studies and for the validation of radiative transfer codes used in general circulation models.

  • PDF

e-AIRS : An Integrated Aerospace Portal for Collaborative Experiments and Dynamic Parametric Studies (e-AIRS : 협업 및 동적 파라메터 실험을 위한 항공 우주 포탈)

  • Cho, Jung-Hyun;Kim, Byung-Sang;Song, Eun-Hye;Kim, Yoon-Hee;Kim, Chong-Am;Jeong, Min-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.552-556
    • /
    • 2006
  • 항공우주의 연구를 위해 대용량의 컴퓨팅 자원 이용, 실험 결과의 상호 교류 및 분석, 온라인 상에서의 자동 실행 등의 서비스가 요구된다. 본 논문에서는 이미 개발된 e-AIRS[1],[2]의 활용을 극대화하고 병렬해석에 많이 사용되고 있는 동적 파라메터 실험 서비스를 구현하고자 한다. 동적 파라메터 실험 서비스는 복잡한 현상을 포함한 다양한 계산 수행을 지원하기위해, 동적으로 파라메터를 생성하고 효율적으로 동시에 작업들을 실행하는 서비스이다. 또한 GT4(Globus Toolkit 4)[3] WSRF를 기반으로 웹 서비스로 구현하여 서비스의 이용 및 접근을 용이하게 하고자 한다. 연구자간의 효과적인 정보 공유 및 협의 서비스를 제공함으로써 항공 우주 연구 개발에 있어 효율적인 환경을 지원함은 물론 연구자간 협력을 통한 신뢰성 있는 결과 값을 도출할 수 있도록 하고 있다.

  • PDF