• Title/Summary/Keyword: dynamics of microcystin

Search Result 5, Processing Time 0.019 seconds

Isolation of Microcystin-LR and Its Potential Function of Ionophore

  • Kim, Gilhoon;Han, Seungwon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • The microcystin is a cyclic heptapeptide from metabolites of cyanobacteria in the genera mycrocystis, anabaeba as a result of eutrophication. It has been known that microcystin-LR is a potent inhibitor of the catalytic subunits of protein phosphatase-1 (PP-1) as well as powerful tumor promoter. The active site of microcystin actually has two metal ions $Fe^{2+}/Zn^{2+}$ close to the nucleophilic portion of PP-1-microcystin complex. We report the isolation and purification of this microcystin-LR from cyanobacteria (blue-green algae) obtained from Daechung Dam in Chung-cheong Do, Korea. Microcystin-LR was extracted from solid-phase extraction (SPE) sample preparation using a CN cartridge. The cyanobacteria extract was purified to obtain microcystin-LR by HPLC method and identified by LC/MS. The detail structural studies that can elucidate the possible role of monovalent and divalent metal ions in PP-1-microcystin complexation were carried out by utilizing molecular dynamics. Conformational changes in metal binding for ligands were monitored by molecular dynamic computation and potential of mean force (PMF) using the method of the free energy perturbation. The microcystin-metal binding PMF simulation results exhibit that microcystin can have very stable binding free energy of -10.95 kcal/mol by adopting the $Mg^{2+}$ ion at broad geometrical distribution of $0.5{\sim}4.5{\AA}$, and show that the $K^+$ ion can form a stable metal complex rather than other monovalent alkali metal ions.

Dynamics of Cyanobacterial Toxins in the Downstream River of Lake Suwa (Suwa호 하류하천에서의 남조류 독소의 동태)

  • Kim, Bom-Chul;Park, Ho-Dong;Katagami, Yukimi;Hwang, Soon-Jin;Kim, Ho-Sub
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.45-53
    • /
    • 2001
  • Transport of cyanobacterial toxins (microcystin-LR, -RR, -YR) were assessed from a eutrophic lake, Lake Suwa, through the outflowing river, the Tenryu River, and its irrigation channel branch. Temporal variation of phytoplankton species composition in the river coincided with those of the lake; Microcystis ichthyoblabe dominated from June to July, and M. viridis dominated from August to September. When cyanobacterial bloom occurred, microcystins were continuously detected at the concentration of $0.3{\sim}3.2\;{\mu}g/l$ even at 32 km downstream. The change of the content of three microcystin variants were related both with the total cell density of Microcystis and with the change of Microcystis species composition. When Microcystis ichthyoblabe dominated during July, only microcystin-RR (MC-RR) and -LR (MC-LR) were detected, while when Microcystis viridis dominated between August and October, microcystin-RR,-YR (MC -YR) and -LR were detected. Along 29 km flowing distance (flow time 11 hours) between site 2 and site 5 in the Tenryu River, cyanobacterial density and microcystin concentration were reduced by 73% and 72%, respectively, which is mostly contributed by the dilution effect of tributary waters (61% and 57%, respectively) . In the artificial irrigation channel microcystins and cyanobacterial cells were decreased less than in the natural river. The results indicate that cyanobacterial toxins can be transported far downstream without much removal and give hazards to water usage in downstream of eutrophic lakes with cyanobacterial blooms.

  • PDF

Water Quality Variations due to Operation of Yeongju Dam (영주댐 운영에 따른 수질 변화)

  • Lee, Dong Yeol;Kim, Seong Eun;Baek, Kyong Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.179-179
    • /
    • 2022
  • 최근 화두가 되고 있는 환경문제 중 하나로 녹조현상을 꼽을 수 있다. 녹조란 남세균이 대량 증식함으로써 물빛이 녹색으로 변하는 현상으로, 영양염류 및 수온 등 이화학적 요소뿐만 아니라체류시간과 같은 수리학적 요인까지 모두 충족되었을 때 발생한다. 심하면 고밀도의 스컴(scum)을 형성하며 독소와 악취를 동반하기도 한다. 유해 남세균이 생성하는 마이크로시스틴(microcystin, MC)이 함유된 물을 입 또는 코로 섭취시 간을 손상시킨다는 보고가 있으며, 최근 해외에서는 MC가 미세먼지처럼 공기 중에 떠다니다 수변에서 생활하는 사람의 호흡기로 들어가 건강 피해를 줄 수 있다는 연구가 속속 나오고 있다. 본 연구는 우리나라 최초의 수질개선용 댐인 영주댐을 연구 대상으로 삼아 수질 모델링을 구축하고 영주댐 운영에 따른 댐 상·하류 조류 변화를 정량적으로 분석하였다. 조류의 강도를 추정하는데 클로로필-a 농도를 사용하였으며, 분석 도구로는 국립환경과학원이 수질예측 및 평가 시 사용하는 EFDC(Environmental Fluid Dynamics Code) 모형을 활용하였다. 대상 구간의 실제 폭, 하상고 분포 등을 고려하여 수표면 격자망을 구현하였으며, 환경부에서 제공하는 수위 및 DO, TN, T-P, 클로로필-a 등을 활용하여 EFDC 모형의 수리 및 수질 재현성 검토를 하였다. 검·보정된 EFDC 모형으로 영주댐의 방류량 변화 및 댐의 개방과 같은 수리학적 요인을 제어하여 특정 지점의 조류 변화를 분석하였다.

  • PDF

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

Cyanobacterial Blooms and Water Quality of Major Recreational Park Ponds in the Capital Region (수도권 주요 공원 연못의 수질 특성과 남조류 대발생)

  • Park, Myung-Hwan;Suh, Mi-Yeon;Hwang, Soon-Jin;Kim, Yong-Jae;Han, Myung-Soo;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.54-65
    • /
    • 2008
  • The seasonal dynamics of phytoplankton and water quality were evaluated bimonthly at 7 park ponds in the capital region from October 2004 to August 2005. With out the change of water temperature $(0.4\sim26.0^{\circ}C)$, cyanobacteria dominated in park ponds such as Gyungbokgung Gyunghyaeru and Seokchon reservoir. The standing crops of phytoplankton was significant related with cell densities of cyanobacteria (r=0.993), while they did not significant correlation with environmental factors. Almost of all park ponds in the capital region were classified as eutrophic state with high TP concentrations and TN/TP ratios less than 10. Major dominant cyanobacteria were as followed; Anabaena sp., Aphanocapsa elachista, Lyngbya contorta, Merismopedia elegans, Microcystis aeruginosa, M. wesenbergii, Microcystis sp., Oscillatoria sp., Phormidium tenue, and Plectonema sp. To date, although the concentration of chlorophyll-${\alpha}$ and cyanobacterial densities in the capital region was below the 'danger' level of WHO guidelines value, the monitoring of cyanobacterial densities and its toxin (microcystin) in recreational/bath water should be continued.