• Title/Summary/Keyword: dynamic weight

Search Result 1,330, Processing Time 0.027 seconds

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

The Analysis of Dynamic Foot Pressure on Difference of Functional Leg Length Inequality (기능적 하지길이 차이에 따른 동적 족저압의 분석)

  • Gong, Won-Tae;Kim, Joong-Hwi;Kim, Tae-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2009
  • Purpose: This study examined the dynamic peak plantar pressure under the foot areas in those with a functional leg length inequality. Methods: The dynamic peak plantar pressure under the foot areas in an experimental group with a functional leg length inequality (n=20) and a control group (n=20) was assessed a using the Mat-Scan system (Tekscan, USA). The peak plantar pressure under the hallux, 1st, 2nd, 3-4th and 5th metatarsal head (MTH), mid foot, and heel was measured while the subject was walking on the Mat-Scan system. Results: The experimental group had significantly higher peak plantar pressure under all foot areas when the dynamic peak plantar pressure in the short leg and long leg sides was compared. The control group had a significantly higher peak plantar pressure under the 1st, 2nd, 3-4th, and 5th MTH when the dynamic peak plantar pressure in the short leg and long leg sides were compared. The experimental group showed a significantly larger difference in the dynamic peak plantar pressure under the hallux, 1st, 2nd, 3-4th and 5th MTH, mid foot and heel than the control group. Conclusion: A functional leg length inequality leads to an increase in the weight distribution and dynamic peak plantar pressure in the side of the short leg.

  • PDF

Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization (다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

The Immediate Effect of Ankle Balance Taping using Kinesiology Tape on the Weight-bearing Ankle Dorsiflexion Range of Motion and the Dynamic Balance in Asymptomatic Subjects

  • Kim, Byeong-Jo;Lee, Jung-Hoon;Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.263-270
    • /
    • 2014
  • PURPOSE: The purpose of this study was to examine the immediate changes in the weight-bearing ankle dorsiflexion range of motion (ROM) and the dynamic balance in asymptomatic subjects using the modified Star Excursion Balance Test (SEBT) after ankle balance taping (ABT) and placebo ABT with kinesiology tape METHODS: A total of 23 active participants (11 men, 12 women) volunteered for this study. Ankle flexibility was assessed using the weight-bearing lunge test, and dynamic balance was assessed using the modified SEBT. Participants were asked to respond to questions regarding their perception of stability, reassurance, and confidence when performing modified SEBT. RESULTS: The weight-bearing ankle dorsiflexion ROM did not show a significant decrease after real ABT or placebo ABT compared to the ROM prior to ABT. The anterior, posterolateral, and posteromedial reach distances of SEBT did not increase significantly after real ABT or placebo ABT compared to the distances prior to ABT. However, the participants' perception of stability, reassurance, and confidence, when performing SEBT with real ABT, was increased compared to that during the control trial. CONCLUSION: This study showed that although real ABT did not immediately improve the reach distances in the 3 directions during modified SEBT, it improved the participants' perception of stability, reassurance, and confidence without decreasing weight-bearing ankle dorsiflexion ROM.

Light-Weight Design of Automotive Knuckle by Using CAE (Computer Aided Engineering) (CAE 해석을 이용한 자동차용 AA6061 Knuckle의 경량화 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.663-668
    • /
    • 2016
  • Increasing fuel economy and reducing air pollution have been unavoidable issues in the development of new cars, and one of the important methods is decreasing vehicle weight. Weight can be reduced by using lightweight materials such as aluminum alloy. Dynamic stiffness analysis was performed and compared for different materials for the knuckle for a car. The dynamic stiffness of 6061 aluminum alloy was about 30% higher than that of FCD600 cast iron. Usually, materials that have high dynamic stiffness show excellent vibration resistance because the dynamic stiffness can affect the vibration characteristics. In order to design a lighter and more reliable chassis component using 6061 aluminum alloy (AA6061-T6), a new knuckle shape is suggested by adding section ribs to an existing knuckle model. The effect of each design change on the reliability and component weight was investigated using computer aided engineering (CAE).

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Photo Sensor Based Measurement and Noise Reduction of Dynamic Weights (광 센서에 기반한 동하중의 측정 및 잡음 감소)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.519-524
    • /
    • 2005
  • Due to various types of errors added to dynamic weight measurement data, proper methods to reduce measurement errors are required to produce reliable weights. It is very difficult to reduce the measurement error due to excessive oscillation of the system. To cope with parasitic types of errors in real systems, information provided by the photo sensors are utilized and combined in such a way to reduce the measurement errors of load cells. In addition to four channels of load cells from a model trailer, photo sensors are used to obtain the information to compensate the error induced from vertical movement of the vehicle due to the variation of ground level. A model trailer system is run to verify the effectiveness of the proposed method to reduce noise of dynamic weight measurements.

A Dynamic Ensemble Method using Adaptive Weight Adjustment for Concept Drifting Streaming Data (컨셉 변동 스트리밍 데이터를 위한 적응적 가중치 조정을 이용한 동적 앙상블 방법)

  • Kim, Young-Deok;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.842-853
    • /
    • 2017
  • Streaming data is a sequence of data samples that are consistently generated over time. The data distribution or concept can change over time, and this change becomes a factor to reduce the performance of a classification model. Adaptive incremental learning can maintain the classification performance by updating the current classification model with the weight adjusted according to the degree of concept drift. However, selecting the proper weight value depending on the degree of concept drift is difficult. In this paper, we propose a dynamic ensemble method based on adaptive weight adjustment according to the degree of concept drift. Experimental results demonstrate that the proposed method shows higher performance than the other compared methods.

Dynamic Trust Model Based on Extended Subjective Logic

  • Junfeng, Tian;Jiayao, Zhang;Peipei, Zhang;Xiaoxue, Ma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3926-3945
    • /
    • 2018
  • In Jøsang's trust model, trust evaluation is obtained through operators, but there are problems with the mutuality and asymmetry of trust and the impact of event weight on trust evaluation. Trust evaluation is updated dynamically and continuously with time and the process of interactions, but it has not been reflected in Jøsang's model. Therefore, final trust evaluation is not accurate, and malicious fraud cannot be prevented effectively. This causes the success rate of interaction to be low. To solve these problems, a new dynamic trust model is proposed based on extended subjective logic (DTM-ESL). In DTM-ESL, the event weight and the mutuality of trust are fully considered, the original one-way trust relationship is extended to a two-way trust relationship, discounting and consensus operators are improved, and trust renewal is designed based on event weight. The viability and effectiveness of this new model are verified by simulation experiments.

Effect of different underwater recovery methods on heart rate after circuit weight training

  • Park, Jun Sik;Kim, Ki Hong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.222-227
    • /
    • 2022
  • The purpose of this study was to investigate changes in heart rate according to recovery methods after circuit weight training exercise. Fourteen men in their twenties were selected as subjects, and three sets of circuit weight training were performed by cycling six sports, and two recovery conditions (dynamic and static) were performed immediately after exercise. Changes in heart rate did not have an interactive effect according to recovery method and time, and both conditions showed significant changes between sets 1 and 2, and between sets 3 and after recovery. In this study, the high heart rate of 2 sets and 3 sets was seen as a result of exercise stimulation, and the low heart rate of 1 set was thought to be due to the decrease in vagus nerve activity rather than the role of catecholamines. On the other hand, the heart rate after 20 minutes of exercise did not show any difference according to the recovery method, which could mean that the recovery process due to the aquatic environment can act more strongly than the process of dynamic recovery and static recovery. It is thought that the characteristics affected the sensory and circulation of the body, and thus the change of the afferent signal and the level of metabolic products generated in the active muscle.