• 제목/요약/키워드: dynamic torsional test

검색결과 78건 처리시간 0.022초

SCM415강의 동적 변형거동에 미치는 페라이트 결정립크기 변화에 관한 연구 (A Study of Dynamic Deformation Behaviors of SCM415 steel with the Change of Ferritic Grain Size)

  • 김헌주;박무용
    • 열처리공학회지
    • /
    • 제20권1호
    • /
    • pp.22-30
    • /
    • 2007
  • Effects of ferrite grain size on static and dynamic deformation behaviors of SCM415 stels were investigated in this study. Dynamic torsional test was conducted using torsional Kolsky bar with the strain rate of $1.6{\times}10^3/s$. Specimens with three different grain size of ferrite, $4.6{\mu}m$, $11{\mu}m$, $35.5{\mu}m$ were used. Dimple fracture mode of the dynamic test specimens showed adiabatic shear bands on the beneath of fracture surface. Increased uniform elongation and decreased non-uniform elongation appeared as grain size of ferrite decreased in dynamic torsional test. However, shear strength was independent on grain size of ferrite.

SCM415강의 정적 및 동적 변형거동에 미치는 탄화물 구상화율 변화에 관한 연구 (A Study of Static and Dynamic Deformation Behaviors of SCM415 steel on the Change of Spherodization of Cementite)

  • 김헌주;임종민
    • 열처리공학회지
    • /
    • 제17권6호
    • /
    • pp.327-335
    • /
    • 2004
  • Effect of spherodization of cementite on static and dynamic deformation behaviors of SCM415 steels was investigated in this study. Dynamic torsional test was conducted using torsional Kolsky bar with the strain rate of $1.6{\times}10^3/s$. Three type of specimens were used with different spherodization degree of cementite. Dynamic test results were analyzed comparing with static tensile results and microstructural changes. The obtained results are as follows; 1) All the specimens of static and dynamic tests showed a ductile fracture mode of dimple. Specimens of the dynamic test showed adiabatic shear bands on the beneath of fracture surface. 2) In static tensile test, decreased tensile strength and increased uniform and non-uniform elongations appeared as spherodization degree of cementite increased. 3) In dynamic torsional test, decreased shear strength and increased uniform elongation appeared as spherodization degree of cementite increased. 4) Due to the largest uniform elongation, superior cold forgeability at high speed is expected on high spherodization degree of cementite.

API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동 (Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels)

  • 김용진;김양곤;신상용;이성학
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.8-18
    • /
    • 2010
  • This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

ECAP으로 제조된 초미세립 순동의 동적 변형거동 (Dynamic Deformation Behavior of Ultra-Fine-Grained Pure Coppers Fabricated by Equal Channel Angular Pressing)

  • 김양곤;황병철;이성학;이철원;신동혁
    • 대한금속재료학회지
    • /
    • 제46권9호
    • /
    • pp.545-553
    • /
    • 2008
  • Dynamic deformation behavior of ultra-fine-grained pure coppers fabricated by equal channel angular pressing (ECAP) was investigated in this study. Dynamic torsional tests were conducted on four copper specimens using a torsional Kolsky bar, and then the test data were analyzed by their microstructures and tensile properties. The 1-pass ECAP'ed specimen consisted of fine dislocation cell structures elongated along the ECAP direction, which were changed to very fine, equiaxed subgrains of 300~400 nm in size as the pass number increased. The dynamic torsional test results indicated that maximum shear stress increased with increasing ECAP pass number. Adiabatic shear bands were not found at the gage center of the dynamically deformed torsional specimen of the 1- or 4-pass ECAP'ed specimen, while some weak bands were observed in the 8-pass ECAP'ed specimen. These findings suggested that the grain refinement according to the ECAP was very effective in strengthening of pure coppers, and that ECAP'ed coppers could be used without serious reduction in fracture resistance under dynamic torsional loading as adiabatic shear bands were hardly formed.

Wind-induced lateral-torsional coupled responses of tall buildings

  • Wu, J.R.;Li, Q.S.;Tuan, Alex Y.
    • Wind and Structures
    • /
    • 제11권2호
    • /
    • pp.153-178
    • /
    • 2008
  • Based on the empirical formulas for power spectra of generalized modal forces and local fluctuating wind forces in across-wind and torsional directions, the wind-induced lateral-torsional coupled response analysis of a representative rectangular tall building was conducted by setting various parameters such as eccentricities in centers of mass and/or rigidity and considering different torsional to lateral stiffness ratios. The eccentricity effects on the lateral-torsional coupled responses of the tall building were studied comprehensively by structural dynamic analysis. Extensive computational results indicated that the torsional responses at the geometric center of the building may be significantly affected by the eccentricities in the centers of mass and/or rigidity. Covariance responses were found to be in the same order of magnitude as the along-wind or across-wind responses in many eccentricity cases, suggesting that the lateral-torsional coupled effects on the overall wind-induced responses can not be neglected for such situations. The calculated results also demonstrated that the torsional motion contributed significantly to the total responses of rectangular tall buildings with mass and/or rigidity eccentricities. It was shown through this study that the framework presented in this paper provides a useful tool to evaluate the wind-induced lateral-torsional coupled responses of rectangular buildings, which will enable structural engineers in the preliminary design stages to assess the serviceability of tall buildings, potential structural vibration problems and the need for a detailed wind tunnel test.

철도 강화노반재료의 정ㆍ동적 특성 분석 (Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials)

  • 황선근;신민호;이성혁;이시한;최찬용
    • 한국철도학회논문집
    • /
    • 제3권1호
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향 (The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance)

  • 문일동;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

비틂홉킨슨봉을 이용한 알루미늄합금의 고속 전단변형 실험 (High strain rate test of aluminum alloy with torsional Hopkinson bar)

  • 전병선;유요한;정동택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.80-83
    • /
    • 1997
  • The split Hopkinson bar technique is the most widely used method to study material behavior at high strain rate deformation. In the present paper, a torsional Hopkinson bar for testing thin-walled tube specimens at high strain rate is described. From the experiment of aluminum 6061, dynamic stress-strain relationship can be obtained and dynamic result is compared with static one.

  • PDF

Experimental investigation of characteristics of torsional wind loads on rectangular tall buildings

  • Li, Yi;Zhang, J.W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.129-145
    • /
    • 2014
  • In order to investigate the characteristics of torsional wind loads on rectangular tall buildings, five models with different rectangular cross-sections were tested in a boundary wind tunnel. Based on the test results, the RMS force coefficients, power spectrum densities as well as vertical correlation functions of torsional wind loads were analyzed. Formulas that took the side ratio as parameters were proposed to fit the test results above. Comparisons between the results calculated by the formulas and the wind tunnel measurements were made to verify the reliability of the proposed formulas. An simplified expression to evaluate the dynamic torsional wind loads on rectangular tall buildings in urban terrain is presented on basis of the above formulas and has been proved by a practical project. The simplified expressions as well as the proposed formulas can be applied to estimate wind-induce torsional response on rectangular tall buildings in the frequency domain.

비틂전단시험에 의한 서해안 새만금 모래의 동적특성 연구 (Study of Dynamic Characteristics of West Coast Saemangeum Sand by Torsional Shear Test)

  • 전홍우;손수원;김진만
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.73-80
    • /
    • 2013
  • The dynamic characteristics of west coast sand were investigated in order to evaluate the design properties of the offshore wind turbine foundations to be constructed in the West Sea. Torsional shear tests were performed at different confining pressures and densities on specimens constituted by the dry fluviation method. The strain-dependent shear modulus and damping curves were obtained, together with modulus degradation curves. The results show that the confining pressure is more influential on the dynamic characteristics of the sand than the density. It was also found that the dynamic curves from this study were similar to those proposed by others. The modulus degradation ratio $G/G_{1st}$ varies slightly at a small strain level, but increases significantly once beyond the intermediate strain level.