• Title/Summary/Keyword: dynamic time history analysis

Search Result 513, Processing Time 0.024 seconds

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Nonlinear time history analysis of a pre-stressed concrete containment vessel model under Japan's March 11 earthquake

  • Duan, An;Zhao, Zuo-Zhou;Chen, Ju;Qian, Jia-Ru;Jin, Wei-Liang
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • To evaluate the behavior of the advanced unbonded pre-stressed concrete containment vessel (UPCCV) for one typical China nuclear power plant under Japan's March 11 earthquake, five nonlinear time history analysis and a nonlinear static analysis of a 1:10 scale UPCCV structure have been carried out with MSC.MARC finite element program. Comparisons between the analytical and experimental results demonstrated that the developed finite element model can predict the earthquake behavior of the UPCCV with fair accuracy. The responses of the 1:10 scale UPCCV subjected to the 11 March 2011 Japan earthquakes recorded at the MYG003 station with the peak ground acceleration (PGA) of 781 gal and at the MYG013 station with the PGA of 982 gal were predicted by the dynamic analysis. Finally, a static analysis was performed to seek the ultimate load carrying capacity for the 1:10 scale UPCCV.

Application of Hydrodynamic Pressure for Three­dimensional Earthquake Safety Analysis of Dam Intake Towers (댐 취수탑 3차원 내진안전성 평가에서의 동수압 적용방법에 관한 연구)

  • Song, Gwang-Seok;Min, Kyoung-Uk;Bea, Jungju;Lee, Jeeho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.139-147
    • /
    • 2018
  • In the present study, effective hydrodynamic pressure modeling methods for three-dimensional earthquake safety analysis of a dam intake tower structure are investigated. Time history analysis results using the Westergaard added mass and Chopra added mass methods are compared with the one by the CASI (Coupled Acoustic Structural Interaction) method, which is accepted as giving almost exact solutions, to evaluate the difference in displacement response, stress and dynamic eccentricity. The 3D time history analysis of a realistic intake tower, which has the standard geometry widely used in Korea, shows that the Chopra added mass method gives similar results in displacement and stress and less conservative results in dynamic eccentricity to CASI ones, while the Westergaard added mass yields much more conservative results in all measures. This study suggests to use the CASI method directly for three-dimensional earthquake safety analysis of a dam intake tower, if computationally possible.

Vibration Fatigue for the Bogie frame of the Rubber Wheel AGT (고무차륜형 AGT 주행장치의 진동피로해석)

  • 유형선;윤성호;변상윤;편수범
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.117-124
    • /
    • 2000
  • The rubber wheel-type AGT has two major kinds of bogie; one is the bogie type and the other steering one. Both are important vehicular structure to support the whole running vehicle and passenger loads. This paper deals with the static analysis for the two types of bogie frame subjected to combined external forces, as well as independent ones specified in UIC 515-4. Furthermore, the dynamic analysis is performed under vibrational loading conditions so as to compare dynamic characteristics, Numerical results by using commercial packages, I-DEAS and NASTRAN show that maximum stresses do not exceed the yield strength level of material used for both bogies. From an overall viewpoint of strength, the bogie type turns out to be superior to the steering type except for the case of a lateral loading. It is also observed that the steering type shows a characteristics of low frequency behavior during a course of searching for structurally weak areas to be stiffened. The vibrational fatigue analysis for each bogie frame depends on the loading time history conditions which is applied. Time History Central Database List in the NASTRAN package. Subsequent1y, the fatigue life of bogie type is longer than the steering type.

  • PDF

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Applicability of Beam Model among Earthquake Response Analysis Models of Liquid-Storage Tank (액체저장탱크의 지진응답해석 모델 중 빔 모델의 적용성)

  • Jin, Byeong-Moo;Jeon, Se-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.696-699
    • /
    • 2004
  • Generally, the time history analysis among seismic response analyses of a structure needs more times than static analysis. Therefore the mechanical model of a structure has been used as a simple lumped parameter model in time history analysis. For the most cases, the simple mechanical model shows the similar results to that of detailed finite element model. so it is reasonable to use the simple mode] in preliminary analysis. In seismic design of liquid storage tank, such as LNG storage tank, the lumped parameter mode] also is being used in preliminary analysis, however sometimes shows the differences to the results of detailed finite element model. Therefore in this study, the dynamic characteristics between lumped parameter model and detailed finite model is compared for the variables such as height/diameter of liquid-storage tank and thickness of wall, then the applicability of beam mode] to the seismic response analysis are evaluated for some liquid storage tanks.

  • PDF

Earthquake response analysis of series reactor

  • Bai, Changqing;Xu, Qingyu;Zhang, Hongyan
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.621-634
    • /
    • 2005
  • A direct transfer substructure method is presented in this paper for analyzing the dynamic characteristics and the seismic random responses of a series reactor. This method combines the concept of FRF (frequency response function) and the transfer matrix algorithm with the substructure approach. The inner degrees of freedom of each substructure are eliminated in the process of reconstruction and the computation cost is reduced greatly. With the convenient solution procedure, the dynamic characteristics analysis of the structure is valid and efficient. Associated with the pseudo excitation algorithm, the direct transfer substructure method is applied to investigating the seismic random responses of the series reactor. The numerical results demonstrate that the presented method is efficient and practicable in engineering. Finally, a precise time integration method is employed in performing a time-history analysis on the series reactor under El Centro and Taft earthquake waves.

A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves (지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.177-184
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Input ensemble was normalized to be compatible with expected peak ground acceleration. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The time history analysis tended to significantly underestimated the seismic response as compared to response spectrum analysis. Further detailed studies regarding selection and scaling scheme of input ground motions is needed.

  • PDF