KSII Transactions on Internet and Information Systems (TIIS)
/
제11권3호
/
pp.1265-1278
/
2017
Dynamic task scheduling is one of the most popular research topics in the cloud computing field. The cloud scheduler dynamically provides VM resources to variable cloud tasks with different scheduling strategies in cloud computing. In this study, we utilized a valid model to describe the dynamic changes of both computing facilities (such as hardware updating) and request task queuing. We built a novel approach called Policy Iteration Scheduling (PIS) to globally optimize the independent task scheduling scheme and minimize the total execution time of priority tasks. We performed experiments with randomly generated cloud task sets and varied the performance of VM resources using Poisson distributions. The results show that PIS outperforms other popular schedulers in a typical cloud computing environment.
Task scheduling is an integrated component of computing with the emergence of grid computing. In this paper, we address two different task scheduling models, which are static Round-Robin (RR) and dynamic Fastest Site First (FSF) task scheduling method, using extended timed marked graphs, which is a special case of Stochastic Petri Nets (SPN). Stochastic reward nets (SRN) is an extension of SPN and provides compact modeling facilities for system analysis. We build hierarchical SRN models to compare two task scheduling methods. The upper level model simulates task scheduling and the lower level model implements task serving process for different sites with multiple servers. We compare these two models and analyze their performances by giving reward measures in SRN.
멀티프로세서가 임베디드 시스템에서 널리 쓰임에 따라 지원되는 전력 최소화 기법을 이용하여 태스크를 수행하기 위해 필요한 에너지의 소모량을 줄여야 할 필요성이 대두된다. 본 논문은 동적 전압 스케일링 및 전력 셧다운을 이용하여 에너지 소모를 최소화 하는 태스크 스케줄링 알고리즘을 멀티프로세서 환경을 위해 제안하였다. 제안된 알고리즘에서는 전력 셧다운시의 에너지 및 타이밍 오버헤드를 고려하여 반복적으로 태스크 할당 및 태스크 순서화를 수행한다. 제안된 반복적인 태스크 스케줄링을 통해 전체 에너지 소모를 줄이는 가장 좋은 해를 얻을 수 있었다. 전체 에너지 소모는 리니어 프로그래밍 모델 및 전력 셧다운의 임계 시간을 고려하여 계산되었다. 실제 어플리케이션으로부터 추출된 표준 태스크 그래프에 기반을 둔 실험 결과를 통해 하드웨어 자원 및 시간제한에 따른 에너지 소모 관계를 분석하였다. 실험 결과를 볼 때 제안된 알고리즘은 기존의 우선권 기반의 태스크 스케줄링에 대해서 의미 있는 성능 향상을 얻을 수 있었다.
This study introduces an example environment where wireless devices are mobile, devices use dynamic voltage scaling, devices and tasks are heterogeneous, tasks have deadline, and the computation and communication power is dynamically changed for energy saving. For this type of environment, the efficient system-level energy management and resource management for task completion can be an essential part of the operation and design of such systems. Therefore, the resources are assigned to tasks and the tasks may be scheduled to maximize a goal which is to minimize energy usage while trying to complete as many tasks as possible by their deadlines. This paper also introduces mobility of nodes and variable transmission power for communication which complicates the resource management/task scheduling problem further.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권9호
/
pp.4103-4121
/
2018
Quality of Service (QoS) awareness is recognized as a key point for the success of Internet of Things (IOT).Realizing the full potential of the Internet of Things requires, a real-time task scheduling algorithm must be designed to meet the QoS need. In order to schedule tasks with diverse QoS requirements in cloud environment efficiently, we propose a task scheduling strategy based on dynamic priority and load balancing (DPLB) in this paper. The dynamic priority consisted of task value density and the urgency of the task execution, the priority is increased over time to insure that each task can be implemented in time. The scheduling decision variable is composed of time attractiveness considered earliest completion time (ECT) and load brightness considered load status information which by obtain from each virtual machine by topic-based publish/subscribe mechanism. Then sorting tasks by priority and first schedule the task with highest priority to the virtual machine in feasible VMs group which satisfy the QoS requirements of task with maximal. Finally, after this patch tasks are scheduled over, the task migration manager will start work to reduce the load balancing degree.The experimental results show that, compared with the Min-Min, Max-Min, WRR, GAs, and HBB-LB algorithm, the DPLB is more effective, it reduces the Makespan, balances the load of VMs, augments the success completed ratio of tasks before deadline and raises the profit of cloud service per second.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3663-3679
/
2020
Scheduling plays a dynamic role in cloud computing in generating as well as in efficient distribution of the resources of each task. The principle goal of scheduling is to limit resource starvation and to guarantee fairness among the parties using the resources. The demand for resources fluctuates dynamically hence the prearranging of resources is a challenging task. Many task-scheduling approaches have been used in the cloud-computing environment. Security in cloud computing environment is one of the core issue in distributed computing. We have designed a deep learning-based security model for scheduling tasks in cloud computing and it has been implemented using CloudSim 3.0 simulator written in Java and verification of the results from different perspectives, such as response time with and without security factors, makespan, cost, CPU utilization, I/O utilization, Memory utilization, and execution time is compared with Round Robin (RR) and Waited Round Robin (WRR) algorithms.
Multicore and multiprocessor systems with dynamic voltage scaling architectures are being used as one of the solutions to satisfy the growing needs of high performance applications with low power constraints. An important aspect that has propelled this solution is effective task/application scheduling and mapping algorithms for multiprocessor systems. This work proposes an energy aware, offline, probability-based unified scheduling and mapping algorithm for multiprocessor systems, to minimize the number of processors used, maximize the utilization of the processors, and optimize the energy consumption of the multiprocessor system. The proposed algorithm is implemented, simulated and evaluated with synthetic task graphs, and compared with classical scheduling algorithms for the number of processors required, utilization of processors, and energy consumed by the processors for execution of the application task graphs.
스케줄링의 목적은 입력 작업(DAG)에 대한 스케줄 결과 길이를 최소화하는 것이다. 이런 스케줄링 문제는 잘 알려진 '정해진 시간 내에 해결하기 어려운 문제(NP-complete)'이며 최적의 스케줄링 결과 값을 얻기 위해서는 휴리스틱으로 해결해야 한다. 선후 관계의 제약을 갖는 노드들의 스케줄링을 효율적으로 수행하기 위해 부모 노드와 이질 프로세서에 대한 정보를 고려하는 TANH(the Task duplication based scheduling Algorithm for Network of Heterogeneous systems), GDL, BIL, TDS과 같은 많은 알고리즘이 제안되었다. 본 논문은 기존의 TANH 스케줄링에서 나타나는 여러 개의 부모 노드와 이질 프로세서에 대한 다양한 경우를 충분히 고려하지 못한 점을 보안하여 향상된 스케줄링을 수행할 수 있는 DTSC (Duplication based Task Scheduling with Communication Cost in Heterogeneous Systems)알고리즘을 제안하였다. 제안된 알고리즘의 성능은 기존 TANH, GDL 알고리즘과 비교하였으며, 스케줄링의 성능 향상을 보여 주었다.
본 논문은 임베디드 시스템에서 불필요한 전력 소모를 감소하기 위해 개선된 예측 동적 전력 관리 구조와 태스크 스케줄링 알고리듬을 제안한다. 제안된 알고리듬은 불필요한 전력 소모를 최소화하기 위해 미리 스케줄링을 한다. 제안된 예측 동적 전력 관리는 수행 오버 헤드를 경감하기 위해서 스케줄링 라이브러리를 제공한다. 실험 결과 제안된 알고리듬은 동적 전력 관리를 적용한 LLF 알고리듬과 비교하여 평균 22.3% 전력 소모 감소를 보인다.
It is important that desktop grids should be able to aggressively deal with the dynamic properties that arise from the volatility and heterogeneity of resources. Therefore, it is required that task scheduling be able to positively consider the execution behavior that is characterized by an individual resource. In this paper, we implement a log analysis system with REST web services, which can analyze the execution behavior by utilizing the actual log data of desktop grid systems. To verify the log analysis system, we conducted simulations and showed that the resource group-based task scheduling, based on the analysis of the execution behavior, offers a faster turnaround time than the existing one even if few resources are used.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.