• Title/Summary/Keyword: dynamic strain coefficient

Search Result 62, Processing Time 0.027 seconds

Dynamic Birefringence and Viscoelasticity of Polystyrene/Poly, (2,6-dimethyl-1-4-phenylen Oxide)Blends (Polystyrene/Poly(2,6-dimethyl-1,4-phenylene Oxide)블렌드의 동적 복굴절과 점탄성)

  • 황의정
    • The Korean Journal of Rheology
    • /
    • v.9 no.3
    • /
    • pp.89-96
    • /
    • 1997
  • PS/PPO 블렌등의 동적 탄성율 E*($\omega$)와 동적 스트레인-광학계수 O*($\omega$)을 유리전이 영역에서 동시에 측정하여, PS/PPO 3종류조성블렌드의 E*($\omega$)와 O*($\omega$)완화거동을 조성 단 일 중합체와 비교고찰하였다. PS/PPO 블렌드의 $\alpha$-분산 점탄성 거동은 조성에 관계없이 거 의 유사하여 조성 고분자가 상호 협동적으로 완화하는 것을 알수 있었다. 그러나 광학적 완 화 스펙트럼 O*($\omega$)는 정성적으로 명확히 다른 거동을 보였다. 단일 PS와 PPO의 O*($\omega$)는 전 영역에 걸쳐 상반된 부로를 나타냈으며 두 고분자의 블렌드는 조성고분자의 반대부호를 상호보상으로 인하여 복굴절이 감소하였다. 3종류블렌드는 PPO의 조성이 증가함에 따라 상 호보상에 의해 O*($\omega$)의부호가 순차적으로 변하여 반전하였으며, 저 복굴절 PS/PPO 블렌드 의 PS조성이 65-80wt% 범위내에 있음을 추정할수 있었다. 상이한 부호를 갖는 복굴절 특 성으로 인하여 블렌드 내에서 각 성분 고분자의 완화 기여를 다순 가성법칙에 의해 정량적 으로 계산하는 것이 가능하였다. 또한 PS/PPO 블렌드의 상용성을 광학적 부분 기여 파라메 터를 사용하여 고찰하였다.

  • PDF

Study on Hydrogen Effect in TIG Welded Stainless Steel (TIG 용접된 스테인리스강의 수소영향에 대한 연구)

  • Lee, Jin-Kyung;Lee, Sang-Pill;Bae, Dong-Su;Lee, Joon-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.58-63
    • /
    • 2016
  • A stainless steel has high corrosion resistance because of nickel in material, so it is used as materials for transportation and storage of hydrogen. In this study, TIG(tungsten ingot gas) welding was carried out on the stainless steel using the storage vessel of hydrogen. The microscopic structures at each region of TIG welded material such as HAZ, weld and base metals using optical microscope were observed. And the damage behavior of stainless steel that underwent the hydrogen charging using nondestructive evaluation was also studied. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties at each zone of TIG welded stainless steel. The velocity and attenuation coefficients of ultrasonic wave didn't show a remarkable difference at each region of welded stainless steel. However, the attenuation coefficient was the highest at the weld zone when hydrogen charged stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced both hydrogen charging and weld. Lots of AE event at elastic region of stress-strain curve were occurred both the hydrogen charged specimen and the free specimen.

Dynamic Viscoelasticity and Optical Properties of Poly(carbonate-g-styrene) Copolymers in the Glass Transition Zone (Poly(carbonate-g-styrene)공중합체의 유리정이 영역에서의 동적 점탄성과 광학특성)

  • 황의정
    • The Korean Journal of Rheology
    • /
    • v.9 no.4
    • /
    • pp.163-173
    • /
    • 1997
  • Polystyrene/polycarbonate 조성이 약 50/50인 3종류의 Poly(carbonate-g-styrene) 공중합체의 동적 탄성율, E*($\omega$)와 동적 스트레인-광학계수 O*($\omega$)을 유리전이 영역부근의 여러온도에서 동시에 측정하여 연구하였다. 두 개의 공중합체는 각각의 스티렌 그라프트쇄 에 5, 10 wt%의 MAH를 함유하고 있다. 이들 공중합체의 E*($\omega$)와 O*($\omega$)완화거동과 그라 프트 공중합체의 상용성과 연관하여 비교 고찰하였다. 공중합체들의 E*($\omega$)는 전형적인 무 정형 고분자의 유리전이 완하거동을 보였으며 정성적인 차이를 발견할수 없었다. 그러나 고 강도의 단일 tan$\delta$분산의 저주파수 영역에 미세분산을 나타내, 공중합체는 2상으로 분리되 어 있음이 추정되엇다. 폴리스티렌 그라프트체에 무수 말레인산 함유량이 증가함에 따라, 저 주파수 영역의 미세피크가 $\alpha$주분산에 병합되어 성분 고분자간의 상호 형동성이 증가함을 알수 있었다. 3공중합체의 유사한 기계적 특성과는 달리, 광학적 완화 스펙트럼 O*($\omega$)는 정 성적으로 명확한 차이를 보여 공중합체들의 광학완화 거동이 명확히 다름을 나타냈다. 기계 적 특성보다는 광학적 특성이 공중합체내의 성분 고분자의 미세한 완하 거동에 훨씬 민감한 응답을나타냈다. 이러한 특성적인 공중합체의 O*($\omega$)차이를 공중합체의 조성단일 고분자 PS, PC의 O*($\omega$)의 가성성을 가정하여 모사하였다 모사에서 구한 광학적 부분 기여 파라메 터를 사용하여 공중합체의 상용성을 고찰하였다.

  • PDF

Numerical Simulation of Turbulent Flow in n Wavy-Walled Channel (파형벽면이 있는 채널 내의 난류유동에 대한 수치해석)

  • Park, Tae-Seon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.655-667
    • /
    • 2003
  • Turbulent flow over a fully-developed wavy channel is investigated by the nonlinear $k-\varepsilon-f_\mu$ model of Park et al.(1) The Reynolds number is fixed at $Re_{b}$ = 6760 through all wave amplitudes and the wave configuration is varied in the range of $0\leq\alpha/\lambda\leq0.15$ and $0.25\leq{\lambda}/H\leq4.0$. The predicted results for wavy channel are validated by comparing with the DNS data of Maa$\beta$ and Schumann(2) The model performance Is shown to be generally satisfactory. As the wave amplitude increases, it is found that the form drag grows linearly and the friction drag is overwhelmed by the form drag. In order to verify these characteristics, a large eddy simulation is performed for four cases. The dynamic model of Germane et al.(3) is adopted. Finally, the effects of wavy amplitude on separated shear layer are scrutinized.

Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L (스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용)

  • Lee, Jin-Kyung;Hwang, Seung-Kuk;Lee, Sang-Pill;Bae, Dong-Su;Son, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

Efficient Adaptive Finite Element Mesh Generation for Dynamics (동적 문제에 효율적인 적응적 유한요소망)

  • Yoon, Chongyul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.385-392
    • /
    • 2013
  • The finite element method has become the most widely used method of structural analysis and recently, the method has often been applied to complex dynamic and nonlinear structural analyses problems. Even for these complex problems, where the responses are hard to predict, finite element analyses yield reliable results if appropriate element types and meshes are used. However, the dynamic and nonlinear behaviors of a structure often include large deformations in various portions of the structure and if the same mesh is used throughout the analysis, some elements may deform to shapes beyond the reliable limits; thus dynamically adapting finite element meshes are needed in order for the finite element analyses to be accurate. In addition, to satisfy the users requirement of quick real run time of finite element programs, the algorithms must be computationally efficient. This paper presents an adaptive finite element mesh generation scheme for dynamic analyses of structures that may adapt at each time step. Representative strain values are used for error estimates and combinations of the h-method(node movement) and the r-method(element division) are used for mesh refinements. A coefficient that depends on the shape of an element is used to limit overly distorted elements. A simple frame example shows the accuracy and computational efficiency of the scheme. The aim of the study is to outline the adaptive scheme and to demonstrate the potential use in general finite element analyses of dynamic and nonlinear structural problems commonly encountered.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

Earthquake Response Characteristics of a Port Structure According to Exciting Frequency Components of Earthquakes (가진 주파수성분에 따른 항만구조물의 지진응답특성에 관한 연구)

  • Kim Doo Kie;Ryu Hee Ryong;Seo Hyeong Yeol;Chang Seong Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • The seismic response characteristics of a port structure were investigated by the earthquake analyses of the structure subjected to high-, low-frequency component, and Uljin earthquakes. In the Fluid-Structure-Soil Interaction(FSSI) analysis, the fluid is modeled by the 4-node quadrilateral element which is a modification of a structural plane element, and the port structure and foundation is modelled by the plane strain element. Since the present method directly models the fluid-structure-soil interaction system using finite element method, it can be easily applied to the dynamic analysis of a 2-D fluid-port-soil system with complex geometry. The results of the seismic coefficient. added mass, and FSSI methods are compared. The results showed that the earthquake with high frequency components more affects the seismic response of the structure than that of low frequency components.

A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Pei, Qitao;Wu, Yongjin
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.519-529
    • /
    • 2017
  • The surrounding rocks of underground openings are natural materials and their mechanical behavior under seismic load is different from traditional man-made materials. This paper proposes a framework to comprehensively model the mechanical behavior of surrounding rocks. Firstly, the effects of seismic load on the surrounding rocks are summarized. Three mechanical effects and the mechanism, including the strengthening effect, the degradation effect, and the relaxation effect, are detailed, respectively. Then, the framework for modelling the mechanical behavior of surrounding rocks are outlined. The strain-dependent characteristics of rocks under seismic load is considered to model the strengthening effect. The damage concept under cyclic load is introduced to model the degradation effect. The quantitative relationship between the damage coefficient and the relaxation zone is established to model the relaxation effect. The major effects caused by seismic load, in this way, are all considered in the proposed framework. Afterwards, an independently developed 3D dynamic FEM analysis code is adopted to include the algorithms and models of the framework. Finally, the proposed framework is illustrated with its application to an underground opening subjected to earthquake impact. The calculation results and post-earthquake survey conclusions are seen to agree well, indicating the effectiveness of the proposed framework. Based on the numerical calculation results, post-earthquake reinforcement measures are suggested.