• Title/Summary/Keyword: dynamic source routing

Search Result 92, Processing Time 0.023 seconds

The Design of Priority­Based Source Routing Protocol for Wireless Ad­hoc Networks (무선 Ad­-hoc 네트워크 환경을 위한 우선순위 기반 소스 라우팅 프로토콜 설계)

  • 천대홍;김인숙;김문정;엄영익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.619-621
    • /
    • 2003
  • 최근 무선 환경에서 기지국 없이 이동 노드들만으로도 서로 통신할 수 있는 ad­hoc 네트워크에 대한 연구가 진행되고 있다. 이러한 무선 ad­hoc 네트워크 환경에서는 라우팅 프로토콜이 중요한 역할을 하게 되는데 그 중에서 DSR(Dynamic Source Routing)은 무선 ad­hoc 네트워크 환경에 적합한 소스 라우팅을 기반으로 한 라우팅 프로토콜이다. 그러나 DSR은 데이터 전송 경로를 선택할 때 그 경로의 신뢰성을 고려하지 않는다. 이를 해결하기 위해 본 논문에서는 무선 ad­hoc 네트워크 환경에서 노드의 우선순위에 기반한 신뢰성 있는 경로 설정 기법을 제안한다. 이 기법은 경로 설정 후에 데이터를 송수신하는 과정에서. 선택된 경로의 링크가 유실될 확률을 줄여줌으로써 더욱 신뢰성 있는 데이터 송수신을 보장한다. 그러므로 이 기법은 무선 ad­hoc 네트워크 환경에서 데이터의 손실을 줄일 필요가 있는 멀티미디어 통신 등의 응용분야에 적용시킬 수 있다.

  • PDF

A New Automatic Route Shortening for DSR

  • Ha, Eun-Yong;Piao, Dong-Huan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.31-33
    • /
    • 2004
  • We suggest an enhanced automatic route shortening method for dynamic source routing (DSR) protocol. DSR is a request / response based protocol which has low routing overhead owing to node movement. The original automatic route shortening is performed on the only nodes that belong to the source route of packets. On the contrary, our suggested method allows all neighbor nodes hearing the packet to participate in automatic route shortening. It makes all possible route shortenings be performed. So we maintain maximal short routes of ongoing data connections. Simulation results show that our method pays small extra overhead for ARS, but increases the ratio of packet transmissions and ARS' are performed from 2 to 5 times as much as original ARS.

  • PDF

Position-Based Multicast Routing in Mobile Ad hoc Networks: An Analytical Study

  • Qabajeh, Mohammad M.;Adballa, Aisha H.;Khalifa, Othman O.;Qabajeh, Liana K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1586-1605
    • /
    • 2012
  • With the prevalence of multimedia applications and the potential commercial usage of Mobile Ad hoc Networks (MANETs) in group communications, Quality of Service (QoS) support became a key requirement. Recently, some researchers studied QoS multicast issues in MANETs. Most of the existing QoS multicast routing protocols are designed with flat topology and small networks in mind. In this paper, we investigate the scalability problem of these routing protocols. In particular, a Position-Based QoS Multicast Routing Protocol (PBQMRP) has been developed. PBQMRP builds a source multicast tree guided by the geographic information of the mobile nodes, which helps in achieving more efficient multicast delivery. This protocol depends on the location information of the multicast members which is obtained using a location service algorithm. A virtual backbone structure has been proposed to perform this location service with minimum overhead and this structure is utilized to provide efficient packet transmissions in a dynamic mobile Ad hoc network environment. The performance of PBQMRP is evaluated by performing both quantitative analysis and extensive simulations. The results show that the used virtual clustering is very useful in improving scalability and outperforms other clustering schemes. Compared to On-Demand Multicast Routing Protocol (ODMRP), PBQMRP achieves competing packet delivery ratio and significantly lower control overhead.

A Simulation Modeling for the Effect of Resource Consumption Attack over Mobile Ad Hoc Network

  • Raed Alsaqour;Maha Abdelhaq;Njoud Alghamdi;Maram Alneami;Tahani Alrsheedi;Salma Aldghbasi;Rahaf Almalki;Sarah Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.111-119
    • /
    • 2023
  • Mobile Ad-hoc Network (MANET) is an infrastructure-less network that can configure itself without any centralized management. The topology of MANET changes dynamically which makes it open for new nodes to join it easily. The openness area of MANET makes it very vulnerable to different types of attacks. One of the most dangerous attacks is the Resource Consumption Attack (RCA). In this type of attack, the attacker consumes the normal node energy by flooding it with bogus packets. Routing in MANET is susceptible to RCA and this is a crucial issue that deserves to be studied and solved. Therefore, the main objective of this paper is to study the impact of RCA on two routing protocols namely, Ad hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR); as a try to find the most resistant routing protocol to such attack. The contribution of this paper is a new RCA model (RCAM) which applies RCA on the two chosen routing protocols using the NS-2 simulator.

Ant Algorithm for Dynamic Route Guidance in Traffic Networks with Traffic Constraints (회전 제약을 포함하고 있는 교통 네트워크의 경로 유도를 위한 개미 알고리즘)

  • Kim, Sung-Soo;Ahn, Seung-Bum;Hong, Jung-Ki;Moon, Jae-Ki
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.185-194
    • /
    • 2008
  • The objective of this paper is to design the dynamic route guidance system(DRGS) and develop an ant algorithm based on routing mechanism for finding the multiple shortest paths within limited time in real traffic network. The proposed ant algorithm finds a collection of paths between source and destination considering turn-restrictions, U-turn, and P-turn until an acceptable solution is reached. This method can consider traffic constraints easily comparing to the conventional shortest paths algorithms.

Design and Fault Tolerant Routing Scheme of Dual Network in Parallel Processing System (병렬처리 시스템에서의 Dual 네트워크의 설계 및 오류허용 라우팅 전략)

  • 최창훈;김성천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1169-1181
    • /
    • 1994
  • The Gamma Network contains the redundant path thereby is provides the ability to tolerate the faults occured. However, in case of identical the source and destination number, only a single path exists, therefore there is no way of connecting for the fault situation. In addition, for the dynamic packet routing strategy, it shoed perform backtracking analysis to find the redundant path. In this paper we proposed a new network, Dual Network, to resolve these drawbacks. The Dual Network uses switching elements about the same network size as the Gamma Network except first and last stage, and it is more efficient than the Gamma Network, for it has reduced the switching stage by one. And since is used a destination tag routing scheme for the control algorithm, it has on advantage of becoming of simpler and faster routing control.

  • PDF

Candidate Path Selection Method for TCP Performance Improvement in Fixed Robust Routing

  • Fukushima, Yukinobu;Matsumura, Takashi;Urushibara, Kazutaka;Yokohira, Tokumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.445-453
    • /
    • 2016
  • Fixed robust routing is attracting attention as routing that achieves high robustness against changes in traffic patterns without conducting traffic measurement and performing dynamic route changes. Fixed robust routing minimizes the worst-case maximum link load by distributing traffic of every source-destination (s-d) router pair onto multiple candidate paths (multipath routing). Multipath routing, however, can result in performance degradation of Transmission Control Protocol (TCP) because of frequent out-of-order packet arrivals. In this paper, we first investigate the influence of multipath routing on TCP performance under fixed robust routing with a simulation using ns-2. The simulation results clarify that TCP throughput greatly degrades with multipath routing. We next propose a candidate path selection method to improve TCP throughput while suppressing the worst-case maximum link load to less than the allowed level under fixed robust routing. The method selects a single candidate path for each of a predetermined ratio of s-d router pairs in order to avoid TCP performance degradation, and it selects multiple candidate paths for each of the other router pairs in order to suppress the worst-case maximum link load. Numerical examples show that, provided the worst-case maximum link load is less than 1.0, our proposed method achieves about six times the TCP throughput as the original fixed robust routing.

Group Dynamic Source Routing Protocol for Wireless Mobile Ad Hoc Networks (무선 이동 애드 혹 네트워크를 위한 동적 그룹 소스 라우팅 프로토콜)

  • Kwak, Woon-Yong;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1034-1042
    • /
    • 2008
  • It is very hard, but important to sustain path stability for a reliable communication in mobile ad hoc networks. We propose a novel source routing protocol that establishes a group path with virtual multiple paths to enable a robust communication. The entire mobile nodes form a disjoint set of clusters: Each has its clusterhead as a cluster leader and a unique cluster label to identify itself from other clusters. A group path is a sequence of cluster labels instead of nodes and the nodes with the same label collaborate to deliver packets to a node with next label on the group path. We prove by resorting to simulation that our proposed protocol outperforms the existing key routing protocols, even for a network with a high node mobility and a high traffic.

A Route Shortening Mechanism for DSR protocol in Mobile Ad-Hoc Networks (이동 애드혹 네트워크에서 DSR 프로토콜을 위한 경로 축소 방법)

  • Ha, Eun-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.475-482
    • /
    • 2007
  • Mobile nodes in ad-hoc wireless networks play roles of router as well as host. Movement of nodes causes network topology changes, which make existing routing information be modified. Therefore many routing protocols for ad-hoc networks were suggested in the literature. In this paper, we suggest an enhanced automatic route shortening method for dynamic source routing(DSR) protocol. DSR is a request/response based protocol which has low routing overhead owing to node movement. The current automatic route shortening is performed on the only nodes which belong to the source route of packets. On the contrary, our suggested method allows all neighbor nodes hearing the packet to participate in automatic route shortening. It makes all possible route shortenings be performed. So we maintain maximal shortened routes of ongoing data connections. Simulation results with ns2 show that our method pays small extra protocol overhead for ARS, but increases the ratio of successful packet transmissions and the number of ARSs performed in our mechanism is from 2 to 5 times higher than in original ARS mechanism and therefore it will improve the network-wide energy consumption in wireless ad-hoc networks.

Route Reutilization Routing in Mobile Ad Hoc Networks

  • Park, Seung-Jin;Yoo, Seong-Moo;Qiu, Fan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.78-97
    • /
    • 2010
  • Route discovery in wireless mobile networks requires a considerable amount of resources due to the mobility of the hosts. Therefore, it would be wise to utilize the effort already invested in existing paths. This paper proposes an efficient way to reuse, whenever possible, existing paths when a new path is being established. In our proposed algorithm, called Route Reutilization Routing (RRR), the reusability is accomplished by the notion of the dynamic proactive zones (DPZ), through which nearby existing path information is disseminated. By utilizing the information stored in DPZs, RRR can achieve considerable savings over other on-demand routing algorithms that use flooding. The unique feature of the proposed algorithm is that DPZs are created and destroyed dynamically around the existing paths, whereas proactive zones are formed around the nodes throughout the network in other route finding algorithms. Even though using DPZs may not result in the shortest path between source and destination, simulation results show the considerable reduction in traffic needed to find a path and therefore increases the available bandwidth for data transmission.