• Title/Summary/Keyword: dynamic skyline queries

Search Result 4, Processing Time 0.026 seconds

An Efficient Grid Method for Continuous Skyline Computation over Dynamic Data Set

  • Li, He;Jang, Su-Min;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Skyline queries are an important new search capability for multi-dimensional databases. Most of the previous works have focused on processing skyline queries over static data set. However, most of the real applications deal with the dynamic data set. Since dynamic data set constantly changes as time passes, the continuous skyline computation over dynamic data set becomes ever more complicated. In this paper, we propose a multiple layer grids method for continuous skyline computation (MLGCS) that maintains multiple layer grids to manage the dynamic data set. The proposed method divides the work space into multiple layer grids and creates the skyline influence region in the grid of each layer. In the continuous environment, the continuous skyline queries are only handled when the updating data points are in the skyline influence region of each layer grid. Experiments based on various data distributions show that our proposed method outperforms the existing methods.

Efficient Continuous Skyline Query Processing Scheme over Large Dynamic Data Sets

  • Li, He;Yoo, Jaesoo
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1197-1206
    • /
    • 2016
  • Performing continuous skyline queries of dynamic data sets is now more challenging as the sizes of data sets increase and as they become more volatile due to the increase in dynamic updates. Although previous work proposed support for such queries, their efficiency was restricted to small data sets or uniformly distributed data sets. In a production database with many concurrent queries, the execution of continuous skyline queries impacts query performance due to update requirements to acquire exclusive locks, possibly blocking other query threads. Thus, the computational costs increase. In order to minimize computational requirements, we propose a method based on a multi-layer grid structure. First, relational data object, elements of an initial data set, are processed to obtain the corresponding multi-layer grid structure and the skyline influence regions over the data. Then, the dynamic data are processed only when they are identified within the skyline influence regions. Therefore, a large amount of computation can be pruned by adopting the proposed multi-layer grid structure. Using a variety of datasets, the performance evaluation confirms the efficiency of the proposed method.

An Efficient Dynamic Prediction Clustering Algorithm Using Skyline Queries in Sensor Network Environment (센서 네트워크 환경에서 스카이라인 질의를 이용한 효율적인 동적 예측 클러스터링 기법)

  • Cho, Young-Bok;Choi, Jae-Min;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.139-148
    • /
    • 2008
  • The sensor network is applied from the field which is various. The sensor network nodes are exchanged with mobile environment and they construct they select cluster and cluster headers. In this paper, we propose the Dynamic Prediction Clustering Algorithm use to Skyline queries attributes in direction, angel and hop. This algorithm constructs cluster in base mobile sensor node after select cluster header. Propose algorithm is based made cluster header for mobile sensor node. It "Adv" reduced the waste of energy which mobile sensor node is unnecessary. Respects clustering where is efficient according to hop count of sensor node made dynamic cluster. To extend a network life time of 2.4 times to decrease average energy consuming of sensor node. Also maintains dynamic cluster to optimize the within hop count cluster, the average energy specific consumption of node decreased 14%.

  • PDF

Reverse Skyline Query Processing in Metric Spaces (거리공간에서의 리버스 스카이라인 질의 처리)

  • Lim, Jong-Tae;Park, Yong-Hun;Seo, Dong-Min;Lee, Jin-Ju;Jang, Soo-Min;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.809-813
    • /
    • 2010
  • Many studies on reverse skyline query processing have been done for company oriented services. The existing methods about reverse skyline are reverse skyline based on dynamic skyline. There is no reverse skyline query processing algorithm based on metric spaces for location-based services. In this paper we propose a reverse skyline query processing scheme that applies for a general skyline and considers distance spaces. The proposed method processes reverse skyline queries in the metric spaces using the existing spatial indexing scheme and considers both Monochromatic and Bichromatic environments. In order to show the superiority of the proposed scheme, we compare it with the basic skyline query processing scheme through performance evaluation. As a result, the proposed method excellent performance was about 5000 times more than conventional method.