• Title/Summary/Keyword: dynamic sensitivity

Search Result 994, Processing Time 0.029 seconds

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

Dynamic Modeling and Sensitivity Analysis for Predicting the Pseudomonas spp. Concentration in Alaska Pollack along the Distribution Path (명태 유통 중 Pseudomonas spp. 농도의 예측 모델링과 민감도 분석)

  • Shim, Soo-Dong;Sung, Jae-Ung;Lee, Jung-Young;Lee, Da-Sun;Kim, Seon-Bong;Hong, Kwang-Won;Lee, Yang-Bong;Lee, Seung-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.3
    • /
    • pp.205-210
    • /
    • 2010
  • Dynamic modeling was used to predict the Pseudomonas spp. concentration in Alaska pollack under dynamic temperature conditions in a programmable incubator using Euler's method. The model evaluation showed good agreement between the predicted and measured concentrations of Pseudomonas spp. In the simulation, three kinds of distribution path were assumed: consumers buying from a distribution center (A), manufacturer (B), or direct market (C). Each of these distribution paths consists of six phases: shipping, warehousing/shipment, warehousing/storing, processing, market exhibition, and sale/consumption. Sensitivity analysis of each phase was also implemented. The Pseudomonas concentrations and sensitivities ($S_k$) at the terminal phases of the three paths were estimated to be (A) 11.174 log CFU/g and 10.550 log $S_k$, (B) 10.948 log CFU/g and 10.738 log $S_k$, and (C) 8.758 log CFU/g and 9.602 log $S_k$, respectively. The sensitivities indicated that path A has the highest risk of failure in managing the relevant phases.

A Study on the Seismic Resistance of Fill-dams by Newmark-type Deformation Analysis (Newmark 기반 변형해석에 의한 필댐의 내진저항성 연구)

  • Park, Dong Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Newmark-type deformation analysis has rarely been done in Korea due to the popularity of simple pseudo-static limit equilibrium analysis and detailed time-history FE/FD dynamic analysis. However, the Korean seismic dam design code updated in 2011 prescribes Newmark-type deformation analysis as a major dynamic analysis method for the seismic evaluation of fill dams. In addition, a design PGA for dynamic analysis is significantly increased in the code. This paper aims to study the seismic evaluation of four existing large fill dams through advanced FEM/Newmark-type deformation analyses for the artificial earthquake time histories with the design PGA of 0.22g. Dynamic soil properties obtained from in-situ geo-physical surveys are applied as input parameters. For the FEM/Newmark analyses, sensitivity analyses are performed to study the effects of input PGA and $G_{max}$ of shell zone on the Newmark deformation. As a result, in terms of deformation, four fill dams are proved to be reasonably safe under the PGA of 0.22g with yield coefficients of 0.136 to 0.187, which are highly resistant for extreme events. Sensitivity analysis as a function of PGA shows that $PGA_{30cm}$ (a limiting PGA to cause the 30 cm of Newmark permanent displacement on the critical slip surface) is a good indicator for seismic safety check. CFRD shows a higher seismic resistance than ECRD. Another sensitivity analysis shows that $G_{max}$ per depth does not significantly affect the site response characteristics, however lower $G_{max}$ profile causes larger Newmark deformation. Through this study, it is proved that the amplification of ground motion within the sliding mass and the location of critical slip surface are the dominant factors governing permanent displacements.

Voltage Sensitivity Index Calculation using Dynamic Simulation (동적 시뮬레이션을 이용한 Voltage Sensitivity 지수 계산)

  • Jeong, Sung-Won;Park, In-Deok;Lee, Geun-Joon;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.453-454
    • /
    • 2007
  • This paper proposes the calculation method of voltage sensitivity index using CBEMA power acceptability curves and the voltage curves of the load bus to which momentary events occur. Voltage sensitivity index is represented by areas between two curves. Voltage sensitivity index is a parameter that depicts the ratio of a load disruption. The correlation between the installation cost of compensation devices and the voltage sag index on the bus can be used the validity of compensation.

  • PDF

The Sensitivity Analysis of Derailment in Suspension Elements of Rail Vehicle (철도차량 현수장치의 탈선에 대한 민감도 연구)

  • 심태웅;박찬경;김기환
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.566-573
    • /
    • 1999
  • This paper is the result of sensitivity analysis of derailment with respect to the selected suspension elements for the rail vehicle. Derailment phenominon has been explained by the derailment quotient. Thus, the sensitivity of derailment is suggested by a response surface model(RSM) which is a functional relationship between derailment quotient and characteristics of suspension elements. To summarize generation of RSM, we can introduce the procedure of sensitivity analysis as follows. First, to form a RSM, a experiment is performed by a dynamic analysis code, VAMPIRE according to a kind of the design of experiments(DOE). Second, RSM is constructed to a 1$\^$st/ order polynomial and then main effect fators are screened through the stepwise regression. Finally, we can see the sensitivity level through the RSM which only consists of the main effect factors and is expressed by the liner, interaction and quadratic effect terms.

  • PDF

Estimation of the vibration fatigue of a linear elastic system based on a desiign sensitivity analysis (설계 만감도 해석을 활용한 선형 시스템 진동내구 평가)

  • Kim, Chan-Jung;Kim, Ku-Sik;Kang, Ho-Young;Jin, Yeo-Hwa;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.491-496
    • /
    • 2010
  • The direct design modification of problematic component is disallowed in order to sacrifice other major factors such as a stability or a major performance. So, the best design policy is to risvise the immature structural medchanism under the minimal design change as soon as possible. For this paper presents a new design sensitivity analysis based on transmissibility rtio (TR) of response acceleration to find a proper candidate for the minimal design modification. The new sensitivity analysis is based on the fact that the sensitivity of TR over a small design change is inversly proportinal to the magnitude of TR. The theory of proposed design sensitivity analysis is simulated with the variance of TR over a dynamic change. Then, new methodology is appplied for a linear elastic specimen to detect the most sensitive node over a design change using measured accleration data during uni-axial vibration test, The physical verification of the sensitivity method is conducted on the CAE model of a linear elastic specimen by adding concentration mass and the vibration fatigue of the simple specimen is analyzed to estimate the relationship between fatigue behaviors and sensitivity consequences.

  • PDF

Prediction of Structural Modified Design Parameter due to the Change of Dynamic Characteristic (동특성변화에 따른 구조물의 변경된 설계파라미터 예측)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.191-196
    • /
    • 2004
  • This study proposed the analysis of mass position detection and modified stiffness due to the change of the mass and stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the mass. The predicted detection of mass positions and magnitudes are in good agrement with these from the structural reanalysis using the modified mass.

  • PDF

Analysis of Mass Position Detection Using the Change of the Structural Dynamic Characteristics (동특성 변화로부터 구조물의 변경질량 위치 해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.120-126
    • /
    • 2004
  • This study proposed the analysis of mass position detection due to the change of the mass and strifeless of structure by using the original and modified dynamic characteristics. The method is applied to examples of the cantilevers beam and the 3 degrees of freedom system by modifying the mass. The predicted detection of the mass positions and magnitudes are in good agrement with the present study from the structural reanalysis using the modified mass.

A Study on Dynamic Modelling of Joints in Plate Structure (평판구조 결합부의 동적 모델링에 관한 연구)

  • 이장무;이재운;성명호
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.61-66
    • /
    • 1992
  • In general, structures have various joints such as bonded joint, bolted joint, bearing joint and welded joint. Dynamic modelling of such joints has been the current topic of interest. In this study, the dynamic modelling of plate structures with bonded joint was investigated by using modal testing, sensitivity analysis and condensation-inverse condensation method of FEM. A proper modelling procedure was proposed and the validity was verified.

  • PDF

Sensitivity Analysis of Dynamic Characteristics of Structural Systems by the Transfer Matrix Method and the Combined Finite Element-Transfer Matrix Method (전달매트릭스법 및 유한요소-전달매트릭스 결합방법에 의한 구조계의 동특성 감도해석)

  • D.S. Cho;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.143-157
    • /
    • 1992
  • For the design of structural systems having the prescribed or optimum dynamic characteristics, some design changes of the initially designed system are required. In these cases, if the sensitivity analysis which can predict the changes of dynamic characteristics due to the changes of design variables is applied, the design changes can be carried out rationally and very efficiently. For many structural systems, it is well known that the analysis by the transfer matrix method(TMM) and the combined finite element-transfer matrix method(FETMM) is more efficient than the analysis by the finite element method. However, most known studies on the sensitivity analysis of structural systems premise using the finite element method. In this paper, the sensitivity analysis methods by the TMM and the FETMM are presented and some numerical investigations on the beam-column with elastically restrained ends and intermediate contraints and the stiffened plate having subsystems are carried out. The results of the numerical examples show good accuracy and computational efficiency of the presented methods, and show that the application of sensitivity analysis in the dynamic characteristic reanalysis give good results within the practically changeable range of design variables.

  • PDF