• Title/Summary/Keyword: dynamic seismic analysis

Search Result 1,389, Processing Time 0.028 seconds

Influence of Earthquake Shape on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 미치는 시간-가속도 형상의 영향)

  • Park, Gun;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.59-66
    • /
    • 2017
  • In the case of fluid storage structure, hydrostatic pressure acts on the structure due to fluid surge during an earthquake. At this time, hydrodynamic pressure of the fluid charge not only by the strength of the earthquake but also by the sloshing height of the fluid. Factors affecting the change of load include the size, width and height of the fluid storage structure and height of fluid, time-history shape, etc. This paper wanted to identify the relationship between the earthquake shape and fluid free surface shape. The sloshing height measured the height of the fluid by applying earthquake to a tank whose width 500mm and comparison of the experiment and analysis. In addition, the shape of the fluid free surface was measured while varying the shape of earthquake and effective of the shape of earthquake of the fluid was analyzed.

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

Earthquake Resistant Design Critieria for Cylindrical Liquid-Storage Steel tanks (원통형 액체저장 강탱크의 내진설계기준)

  • 국승규;이진호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • While the codifying works or the earthquake resistant design codes for buildings and bridges have been carried out progressively, such works for tank structures are still at the beginning steps. In case of the collapse of tank structures under seismic actions, substantially severe damages are expected due to the spillage of tank contents in addition to the direct economic losses of tanks and contents. Therefore not only the analysis and verification methods for the dynamic behavior of tank structures but also the measures of minimizing the damage propagation should be included in the codes for tank structures. In this paper the design concepts and principles, the analysis and verification methods as well as the measures against the damage propagation are set forth, which are mandatory for the preparation of the earthquake resistant design codes for cylindrical liquid-storage steel tanks.

  • PDF

Instrumentation and system identification of a typical school building in Istanbul

  • Bakir, Pelin Gundes
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.179-197
    • /
    • 2012
  • This study presents the findings of the structural health monitoring and the real time system identification of one of the first large scale building instrumentations in Turkey for earthquake safety. Within this context, a thorough review of steps in the instrumentation, monitoring is presented and seismic performance evaluation of structures using both nonlinear pushover and nonlinear dynamic time history analysis is carried out. The sensor locations are determined using the optimal sensor placement techniques used in NASA for on orbit modal identification of large space structures. System identification is carried out via the stochastic subspace technique. The results of the study show that under ambient vibrations, stocky buildings can be substantially stiffer than what is predicted by the finite element models due to the presence of a large number of partitioning walls. However, in a severe earthquake, it will not be safe to rely on this resistance due to the fact that once the partitioning walls crack, the bare frame contributes to the lateral stiffness of the building alone. Consequently, the periods obtained from system identification will be closer to those obtained from the FE analysis. A technique to control the validity of the proportional damping assumption is employed that checks the presence of phase difference in displacements of different stories obtained from band pass filtered records and it is confirmed that the "proportional damping assumption" is valid for this structure. Two different techniques are implemented for identifying the influence of the soil structure interaction. The first technique uses the transfer function between the roof and the basement in both directions. The second technique uses a pre-whitening filter on the data obtained from both the basement and the roof. Subsequently the impulse response function is computed from the scaled cross correlation between the input and the output. The overall results showed that the structure will satisfy the life safety performance level in a future earthquake but some soil structure interaction effects should be expected in the North South direction.

Modal based Structural Model Modification Using Genetic Algorithm (유전자 알고리즘을 이용한 모드기반 교량의 해석모델개선)

  • Yun Chung-Bang;Lee Jong-Jae;Lee Jung-Seok;Juhn Gui-Hyun;Yi Jin-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.389-403
    • /
    • 2004
  • This study presents the structural model modification based on the modal data such as natural frequencies and mode shapes. Preliminary structural model can be obtained using design drawings and field measurement, and therefore the deteriorated stiffness of a structure and the effect of the boundary conditions are difficult to be evaluated in preliminary analysis model, and the preliminary model can be modified using structural response data including static and/or dynamic characteristics. In this study, the structural model is modified based on the structural modal data using genetic algorithm. Modal testing were carried out for Imjin River Bridge and Hangjoo Bridge, the modal properties were estimated using modal identification techniques, and finally the structural models were updated using genetic algorithm. The modified structural model could give us more reliable structural analysis results and therefore those can be used for structural performance evaluation such as load carrying capacity and seismic capacity.

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.

Dynamic Resistance of Anchor using Blasting Test and Numerical analysis for Earthquake (발파실험과 내진해석을 통한 Anchor의 동적 저항성에 관한 연구)

  • Choi, Kyung-Jip;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.500-511
    • /
    • 2017
  • Recently, as earthquakes have occurred in Gyeongju, interest in the stability of structures against vibration from earthquakes has increased. In Korea, the capacity of load resistance is mainly considered in the design of anchors. However, the vibration resistance characteristics of anchors have not been fully elucidated. The traditional type of anchor, which is a frictional resistance anchor, is often reported to fail due to vibration in construction procedures, such as blasting. The expansion type of anchor, on the other hand, could have more resistance to vibration but its capability of demonstrating vibratory resistance has to be investigated. In order to verify the vibratory resistance characteristics of expansion anchors against blasting and earthquake vibration, field tests and numerical analyses for seismic wave were performed. Field blasting test results show that the expansion anchor has better capability against vibratory load than does the frictional type anchor. Numerical analysis to earthquake also show that the expansion type anchor provides more resistance than does the frictional type anchor.

Computational analysis of three dimensional steel frame structures through different stiffening members

  • Alaskar, Abdulaziz;Wakil, Karzan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.187-197
    • /
    • 2020
  • Ground motion records are commonly used for fragility curves (FCs) developing utilized in seismic loss estimating analysis for earthquake prone zones. These records could be 'real', say the recorded acceleration time series or 'simulated' records consistent with the regional seismicity and produced by use of alternative simulation methods. This study has focused on fragility curves developing for masonry buildings through computational 'simulated' ground motion records while evaluating the properness of these fragilities compared to the curves generated by the use of 'real' records. Assessing the dynamic responses of structures, nonlinear computational time history analyses through the equivalent single degree of freedom systems have been implemented on OpenSees platform. Accordingly, computational structural analyses of multi-story 3D frame structures with different stiffening members considering soil interaction have been carried out with finite element software according to (1992) Earthquake East-West component. The obtained results have been compared to each frame regarding soil interaction. Conclusion and recommendations with the discuss of obtaining findings are presented.

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.

Assessment of Response Spectrum by Dynamic Centrifuge Test for the Pile Foundation into the Clay (동적 원심모형실험에 의한 점성토 지반에 근입된 말뚝지지 기초의 응답 스펙트럼 분석)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo;Kim, Dong-Soo
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Site coefficient and amplification factor of current domestic Seismic Design Code (KBC-2009) have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. Accordingly, in this study dynamic centrifugal test and analysis for pile foundation into clay were achieved. and the response spectrums of free surface and basement were compared with each other. Within the period 1sec., the measured spectral acceleration of free surface and basement was bigger than the design spectral acceleration of SC and SD site. However the measured spectral acceleration of free surface and basement for the period over 1.5sec. was smaller than the design spectral acceleration of SC site. There was no severe difference of spectral acceleration according to the upper structure, embedded depth of foundation and free surface conditions. Consequently, normal domestic apartment housing for the period range over 1.5sec. could be design more economically applying these test result.