• Title/Summary/Keyword: dynamic recurrent neural network

Search Result 82, Processing Time 0.023 seconds

Adaptive Neural Dynamic Surface Control via H Approach for Nonlinear Flight Systems (비선형 비행 시스템을 위한 H 접근법 기반 적응 신경망 동적 표면 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.254-262
    • /
    • 2008
  • In this paper, we propose an adaptive neural dynamic surface control (DSC) approach with $H_{\infty}$ tracking performance for full dynamics of nonlinear flight systems. It is assumed that the model uncertainties such as structured and unstrutured uncertainties, and external disturbances influence the nonlinear aircraft model. In our control system, self recurrent wavelet neural networks (SRWNNs) are used to compensate the model uncertainties of nonlinear flight systems, and an adaptive DSC technique is extended for the disturbance attenuation of nonlinear flight systems. All weights of SRWNNs are trained on-line by the smooth projection algorithm. From Lyapunov stability theorem, it is shown that $H_{\infty}$ performance nom external disturbances can be obtained. Finally, we present the simulation results for a nonlinear six-degree-of-freedom F-16 aircraft model to confirm the effectiveness of the proposed control system.

Adaptive-Tuning of PID Controller using Self-Recurrent Neural Network (자기순환 신경망을 이용한 PID 제어기의 적응동조)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when th control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an adaptive-tuning type PID controller is constructed by self-recurrent Neural Network(SRNN). applying back-propagation(BP) algorithm. Form the result of computer simulation in the proposed controller, its usefulness is verified.

  • PDF

System Identification Using Gamma Multilayer Neural Network (감마 다층 신경망을 이용한 시스템 식별)

  • Go, Il-Whan;Won, Sang-Chul;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.238-244
    • /
    • 2008
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper presents gamma neural network(GAM) to improve the dynamics of multilayer network. The GAM network uses the gamma memory kernel in the hidden layer of feedforword multilayer network. The GAM network is evaluated in linear and nonlinear system identification, and compared with feedforword(FNN) and recurrent neural networks(RNN) for the relative comparison of its performance. Experimental results show that the GAM network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayer networks in system identification.

  • PDF

Particle Swarm Optimization in Gated Recurrent Unit Neural Network for Efficient Workload and Resource Management (효율적인 워크로드 및 리소스 관리를 위한 게이트 순환 신경망 입자군집 최적화)

  • Ullah, Farman;Jadhav, Shivani;Yoon, Su-Kyung;Nah, Jeong Eun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.45-49
    • /
    • 2022
  • The fourth industrial revolution, internet of things, and the expansion of online web services have increased an exponential growth and deployment in the number of cloud data centers (CDC). The cloud is emerging as new paradigm for delivering the Internet-based computing services. Due to the dynamic and non-linear workload and availability of the resources is a critical problem for efficient workload and resource management. In this paper, we propose the particle swarm optimization (PSO) based gated recurrent unit (GRU) neural network for efficient prediction the future value of the CPU and memory usage in the cloud data centers. We investigate the hyper-parameters of the GRU for better model to effectively predict the cloud resources. We use the Google Cluster traces to evaluate the aforementioned PSO-GRU prediction. The experimental shows the effectiveness of the proposed algorithm.

Neural Network Modeling of Hydrocarbon Recovery at Petroleum Contaminated Sites

  • Li, J.B.;Huang, G.H.;Huang, Y.F.;Chakma, A.;Zeng, G.M.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.786-789
    • /
    • 2002
  • A recurrent artificial neural network (ANN) model is developed to simulate hydrocarbon recovery process at petroleum-contaminated site. The groundwater extraction rate, vacuum pressure, and saturation hydraulic conductivity are selected as the input variables, while the cumulative hydrocarbon recovery volume is considered as the output variable. The experimental data fer establishing the ANN model are from implementation of a multiphase flow model for dual phase remediation process under different input variable conditions. The complex nonlinear and dynamic relationship between input and output data sets are then identified through the developed ANN model. Reasonable agreements between modeling results and experimental data are observed, which reveals high effectiveness and efficiency of the neural network approach in modeling complex hydrocarbon recovery behavior.

  • PDF

A on-line learning algorithm for recurrent neural networks using variational method (변분법을 이용한 재귀신경망의 온라인 학습)

  • Oh, Oh, Won-Geun;Suh, Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

Real-time modeling prediction for excavation behavior

  • Ni, Li-Feng;Li, Ai-Qun;Liu, Fu-Yi;Yin, Honore;Wu, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.643-654
    • /
    • 2003
  • Two real-time modeling prediction (RMP) schemes are presented in this paper for analyzing the behavior of deep excavations during construction. The first RMP scheme is developed from the traditional AR(p) model. The second is based on the simplified Elman-style recurrent neural networks. An on-line learning algorithm is introduced to describe the dynamic behavior of deep excavations. As a case study, in-situ measurements of an excavation were recorded and the measured data were used to verify the reliability of the two schemes. They proved to be both effective and convenient for predicting the behavior of deep excavations during construction. It is shown through the case study that the RMP scheme based on the neural network is more accurate than that based on the traditional AR(p) model.

Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood (수문모형과 기계학습을 연계한 실시간 하천홍수 예측)

  • Lee, Jae Yeong;Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • The hydrological characteristics of watersheds and hydraulic systems of urban and river floods are highly nonlinear and contain uncertain variables. Therefore, the predicted time series of rainfall-runoff data in flood analysis is not suitable for existing neural networks. To overcome the challenge of prediction, a NARX (Nonlinear Autoregressive Exogenous Model), which is a kind of recurrent dynamic neural network that maximizes the learning ability of a neural network, was applied to forecast a flood in real-time. At the same time, NARX has the characteristics of a time-delay neural network. In this study, a hydrological model was constructed for the Taehwa river basin, and the NARX time-delay parameter was adjusted 10 to 120 minutes. As a result, we found that precise prediction is possible as the time-delay parameter was increased by confirming that the NSE increased from 0.530 to 0.988 and the RMSE decreased from 379.9 ㎥/s to 16.1 ㎥/s. The machine learning technique with NARX will contribute to the accurate prediction of flow rate with an unexpected extreme flood condition.

Synthesis of Expressive Talking Heads from Speech with Recurrent Neural Network (RNN을 이용한 Expressive Talking Head from Speech의 합성)

  • Sakurai, Ryuhei;Shimba, Taiki;Yamazoe, Hirotake;Lee, Joo-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.16-25
    • /
    • 2018
  • The talking head (TH) indicates an utterance face animation generated based on text and voice input. In this paper, we propose the generation method of TH with facial expression and intonation by speech input only. The problem of generating TH from speech can be regarded as a regression problem from the acoustic feature sequence to the facial code sequence which is a low dimensional vector representation that can efficiently encode and decode a face image. This regression was modeled by bidirectional RNN and trained by using SAVEE database of the front utterance face animation database as training data. The proposed method is able to generate TH with facial expression and intonation TH by using acoustic features such as MFCC, dynamic elements of MFCC, energy, and F0. According to the experiments, the configuration of the BLSTM layer of the first and second layers of bidirectional RNN was able to predict the face code best. For the evaluation, a questionnaire survey was conducted for 62 persons who watched TH animations, generated by the proposed method and the previous method. As a result, 77% of the respondents answered that the proposed method generated TH, which matches well with the speech.

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.