• Title/Summary/Keyword: dynamic power consumption

Search Result 424, Processing Time 0.027 seconds

Adaptive Cross-Layer Resource Optimization in Heterogeneous Wireless Networks with Multi-Homing User Equipments

  • Wu, Weihua;Yang, Qinghai;Li, Bingbing;Kwak, Kyung Sup
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.784-795
    • /
    • 2016
  • In this paper, we investigate the resource allocation problem in time-varying heterogeneous wireless networks (HetNet) with multi-homing user equipments (UE). The stochastic optimization model is employed to maximize the network utility, which is defined as the difference between the HetNet's throughput and the total energy consumption cost. In harmony with the hierarchical architecture of HetNet, the problem of stochastic optimization of resource allocation is decomposed into two subproblems by the Lyapunov optimization theory, associated with the flow control in transport layer and the power allocation in physical (PHY) layer, respectively. For avoiding the signaling overhead, outdated dynamic information, and scalability issues, the distributed resource allocation method is developed for solving the two subproblems based on the primal-dual decomposition theory. After that, the adaptive resource allocation algorithm is developed to accommodate the timevarying wireless network only according to the current network state information, i.e. the queue state information (QSI) at radio access networks (RAN) and the channel state information (CSI) of RANs-UE links. The tradeoff between network utility and delay is derived, where the increase of delay is approximately linear in V and the increase of network utility is at the speed of 1/V with a control parameter V. Extensive simulations are presented to show the effectiveness of our proposed scheme.

An Efficient Logging Scheme based on Dynamic Block Allocation for Flash Memory-based DBMS (플래시 메모리 기반의 DBMS를 위한 동적 블록 할당에 기반한 효율적인 로깅 방법)

  • Ha, Ji-Hoon;Lee, Ki-Yong;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.374-385
    • /
    • 2009
  • Flash memory becomes increasingly popular as data storage for various devices because of its versatile features such as non-volatility, light weight, low power consumption, and shock resistance. Flash memory, however, has some distinct characteristics that make today's disk-based database technology unsuitable, such as no in-place update and the asymmetric speed of read and write operations. As a result, most traditional disk-based database systems may not provide the best attainable performance on flash memory. To maximize the database performance on flash memory, some approaches have been proposed where only the changes made to the database, i.e., logs, are written to another empty place that has born erased in advance. In this paper, we propose an efficient log management scheme for flash-based database systems. Unlike the previous approaches, the proposed approach stores logs in specially allocated blocks, called log blocks. By evenly distributing logs across log blocks, the proposed approach can significantly reduce the number of write and erase operations. Our performance evaluation shows that the proposed approaches can improve the overall system performance by reducing the number of write and erase operation compared to the previous ones.

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

Collaborative Obstacle Avoidance Method of Surface and Aerial Drones based on Acoustic Information and Optical Image (음향정보 및 광학영상 기반의 수상 및 공중 드론의 협력적 장애물회피 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1081-1087
    • /
    • 2015
  • Recently, the researches of aerial drones are actively executed in various areas, the researches of surface drones and underwater drones are also executed in marine areas. In case of surface drones, they essentially utilize acoustic information by the sonar and consequently have the local information in the obstacle avoidance as the sonar has the limitations due to the beam width and detection range. In order to overcome this, more global method that utilizes optical images by the camera is required. Related to this, the aerial drone with the camera is desirable as the obstacle detection of the surface drone with the camera is impossible in case of the existence of clutters. However, the dynamic-floating aerial drone is not desirable for the long-term operation as its power consumption is high. To solve this problem, a collaborative obstacle avoidance method based on the acoustic information by the sonar of the surface drone and the optical image by the camera of the static-floating aerial drone is proposed. To verify the performance of the proposed method, the collaborative obstacle avoidances of a MSD(Micro Surface Drone) with an OAS(Obstacle Avoidance Sonar) and a BMAD(Balloon-based Micro Aerial Drone) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Design of Readout Circuit with Dual Slope Correction for photo sensor of LTPS TFT-LCD (LTPS TFT LCD 패널의 광 센서를 위한 dual slope 보정 회로)

  • Woo, Doo-Hyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.31-38
    • /
    • 2009
  • To improve the image quality and lower the power consumption of the mobile applications, it is the one of the best candidate to control the backlight unit of the LCD module with ambient light. Ambient light sensor and readout circuit were integrated in LCD panel for the mobile applications, and we designed them with LTPS TFT. We proposed noble start-up correction in order to correct the variation of the photo sensors in each panel. We used time-to-digital method for converting photo current to digital data. To effectively merge time-to-digital method with start-up correction, we proposed noble dual slope correction method. The entire readout circuit was designed and estimated with LTPS TFT process. The readout circuit has very simple and stable structure and timing, so it is suitable for LTPS TFT process. The readout circuit can correct the variation of the photo sensors without an additional equipment, and it outputs the 4-levels digital data per decade for input luminance that has a dynamic range of 60dB. The readout rate is 100 times/sec, and the linearity error for digital conversion is less than 18%.

The Implementation of a Battery Simulator with Atypical Characteristics of Batteries (비정형적 배터리 특성을 포함한 배터리 시뮬레이터의 구현)

  • Lee, Dong Sung;Lee, Seong-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.419-426
    • /
    • 2014
  • The recent trend of performance increase in the smart mobile devices demands more power consumption and lower batter life time. Among three battery models of mathematical model, electrochemical model and electric model, the Thevenin's equivalent circuit with non-linear function model of SOC in the electrical model is widely used. However, the OCV results have only limited accuracy because of the characteristic shift caused by temperature and age and atypical impedance property that cannot expressed by electrical components. In this paper, the new battery model that improves the accuracy of the existing models is proposed. In the proposed simulator the mathematical model for SOC characteristic is improved and the adjustment for the temperature, the age of battery and atypical electrical characteristics. In the experimental results of predicting of the battery in the static and dynamic state, the proposed simulator shows improved MSE comparing to the results of the existing methods.

Wireless Sensor Network for Wildfire Monitoring (산불 감시를 위한 무선 센서네트워크)

  • Sohn, Jung-Man;Seok, Chang-Ho;Park, Whang-Jong;Chang, Yu-Sik;Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.846-851
    • /
    • 2007
  • The wireless sensor network is one of the most practical and cost-effective solutions for monitoring systems covering wild and wide area such as wildfire monitoring. However, the RF distance between sensor nodes is very short due to the need of low power consumption of the sensor node, so the number of sensor nodes to be deployed in the target area is more than tens of thousands. In this paper, we design and analyze the deployment issues as well as re-deployment problem occurred when the battery is exhausted. We also propose the needs and solutions for coverage problem in dynamic deployment. By the experimental evaluations, we analyze the packet success ratio between sensor nodes under various environments such as obstacles and variable distances.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Journal of Audiology & Otology
    • /
    • v.23 no.3
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Korean Journal of Audiology
    • /
    • v.23 no.3
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.