• Title/Summary/Keyword: dynamic power consumption

Search Result 425, Processing Time 0.025 seconds

Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1 (기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석)

  • YULHO LEE;SUNGJIN PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

Power-Minimizing DVFS Algorithm Using Estimation of Video Frame Decoding Complexity (영상 프레임 디코딩 복잡도 예측을 통한 DVFS 전력감소 방식)

  • Ahn, Heejune;Jeong, Seungho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.46-53
    • /
    • 2013
  • Recently, intensive research has been performed for reducing video decoder energy consumption, especially based on DVFS (Dynamic Voltage and Frequency Scaling) technique. Our previous work [1] has proposed the optimal DVFS algorithm for energy reduction in video decoders. In spite of the mathematical optimality of the algorithm, the precondition of known frame decoding cycle/complexity limits its application to some realistic scenarios. This paper overcomes this limitation by frame data size-based estimation of frame decoding complexity. The proposed decoding complexity estimation method shows over 90% accuracy. And with this estimation method and buffer underflow margin of around 20% of frame size, almost same power consumption reduction performance as the optimal algorithm can be achieved.

Dynamic Adjustment of Ad hoc Traffic Indication Map(ATIM) window to save Power in IEEE 802.11 DCF

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.343-347
    • /
    • 2008
  • Wakeup schemes that turn off sensors' radio when communication is not necessary have great potential in energy saving. At the start of each beacon interval in the IEEE 802.11 power saving mode specified for DCF, each node periodically wakes up for duration called the ATIM Window. However, in the power saving mechanism specified in IEEE 802.11, all nodes use the same ATIM window size. Since the ATIM window size critically affects throughput and energy consumption, a fixed ATIM window does not perform well in all situations. This paper proposes an adaptive mechanism to dynamically choose an ATIM window size according to network condition. Simulation results show that the proposed scheme outperforms the IEEE 802.11 power saving mechanism in terms of the amount of power consumed and the packet delivery ratio.

Power-Aware Dynamic Source Routing in Wireless Ad-hoc Networks (무선 애드혹 망에서의 전력 인식 동적 소스 라우팅)

  • 정혜영;신광욱;임근휘;이승학;윤현수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.5
    • /
    • pp.519-531
    • /
    • 2004
  • Ad-hoc networks are temporary wireless systems composed of mobile nodes without any fixed infrastructure. The life time of each node in the ad-hoc network significantly affects the life time of whole ad-hoc network. A node which drained out its battery may incur the partition of whole network in some network topology The life time of each node depends on the battery capacity of each node. Therefore if all mobile nodes in the network live evenly long, the life time of the network will be longer. In this paper, we propose Power-Aware Dynamic Source Routing (PADSR) which selects the best path to make the life time of the network be longer. In PADSR, when a source node finds a path to the destination node, it selects the best path that makes nodes in the network live evenly long. To find the best path, PADSR considers the consumption of transmission energy and residual battery capacity of nodes upon the path. Consequently the network lives longer if we use PADSR.

Application of ANN to Load Modeling in Power System Analysis

  • Jaeyoon Lim;Lee, Jongpil;Pyeongshik Ji;A. Ozdemir;C. Singh
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.136-144
    • /
    • 2002
  • Load models are very important for improving the accuracy of stability analysis and load flow studies. Various loads are connected to a power bus and their characteristics of power consumption change with voltage and frequency. Thus, the effect of voltage/frequency changes must be considered in load modeling. In this work, artificial neural networks-ANNs- were used to construct the component load models for more accurate modeling. A typical residential load was selected and subjected to a test under variable voltage/frequency conditions. Acquired data were used to construct component models by ANNs. The aggregation process of separately determined load models is also presented in the paper. Furthermore, this paper proposes a method to transform a single load model constructed by the aggregation method into a mathematical load model that can be used in traditional power system analysis software.

Energy-efficient Relay MAC with Dynamic Power Control in Wireless Body Area Networks

  • Cai, Xuelian;Yuan, Jingjing;Yuan, Xiaoming;Zhu, Wu;Li, Jiandong;Li, Changle;Ullah, Sana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1547-1568
    • /
    • 2013
  • Wireless body area network (WBAN) is an emerging short-range wireless communication network with sensor nodes located on, in or around the human body for healthcare, entertainment and ubiquitous computing. In WBANs, energy is severely constrained which is the prime consideration in the medium access control (MAC) protocol design. In this paper, we propose a novel MAC protocol named Energy-efficient Relay MAC with dynamic Power Control (ERPC-MAC) to save energy consumption. Without relying on the additional devices, ERPC-MAC employs relaying nodes to provide relay service for nodes which consume energy fast. Accordingly the superframe adjustment is performed and then the network topology can be smoothly switched from single-hop to multi-hop. Moreover, for further energy saving and reliability improvement, the dynamic power control is introduced to adjust the power level whenever a node transmits its packets to the coordinator or the relaying node. To the best of the authors' knowledge, this is the first effort to integrate relay, topology adjustment and power control to improve the network performance in a WBAN. Comprehensive simulations are conducted to evaluate the performance. The results show that the ERPC-MAC is more superior to the existing standard and significantly prolongs the network lifetime.

An Energy-aware Dynamic Source Routing Algorithm for Mobile Ad-hoc Networks (이동 애드혹 네트워크에서 에너지를 고려한 동적 소스 라우팅 알고리즘)

  • Lee, Cheong-Yeop;Shin, Yong-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.165-173
    • /
    • 2011
  • In Mobile Ad-hoc Network(MANET), mobile nodes are operated by limited batteries. Therefore, it is very important to consume the battery power efficiently to prevent termination of the network. In this paper, we propose Energy-aware Dynamic Source Routing(EDSR) which is based on the Dynamic Source Routing(DSR) to increase the packet transmission and lifetime of the network. If the battery power of a node reaches threshold level, then the node gives up the function of relaying to save battery power except as a source and a destination node. While the conventional DSR doesn't consider the battery consumptions of the nodes, EDSR blocks the nodes from relaying whose battery powers are below the threshold level. Simulation results show the proposed EDSR is more efficient in packet transmission and network lifetime through the balanced battery consumption of the mobile nodes.

Analysis of Low Power and Channel Interferences for Zigbee (Zigbee의 저전력화와 채널간섭 분석)

  • Kang, Min-Goo;Shin, Ho-Jin
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.33-41
    • /
    • 2010
  • The battery consumption and the wireless communication pattern were analyzed for the low power and the improvement of channel interferences between of Zigbee networks and WPAN(Wireless Personal Area Network). The communication patterns considering end device's battery saving during channel searching period were analyzed for low power consumption topology of Zigbee dynamic ad-hoc characteristics. And, the communication patterns were analyzed due to channel interferences between WLAN and Random Back off of Zigbee, too. As a result, the communication patterns of Zigbee's coordinator and end devices is alleviated for the longer battery life time of Zigbee's end device due to Zigbee's end device setting techniques.

5.2 mW 61 dB SNDR 15 MHz Bandwidth CT ΔΣ Modulator Using Single Operational Amplifier and Single Feedback DAC

  • Cho, Young-Kyun;Park, Bong Hyuk;Kim, Choul-Young
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.217-226
    • /
    • 2016
  • We propose an architecture that reduces the power consumption and active area of such a modulator through a reduction in the number of active components and a simplification of the topology. The proposed architecture reduces the power consumption and active area by reducing the number of active components and simplifying the modulator topology. A novel second-order loop filter that uses a single operational amplifier resonator reduces the number of active elements and enhances the controllability of the transfer function. A trapezoidal-shape half-delayed return-to-zero feedback DAC eliminates the loop-delay compensation circuitry and improves pulse-delay sensitivity. These simple features of the modulator allow higher frequency operation and more design flexibility. Implemented in a 130 nm CMOS technology, the prototype modulator occupies an active area of $0.098mm^2$ and consumes 5.23 mW power from a 1.2 V supply. It achieves a dynamic range of 62 dB and a peak SNDR of 60.95 dB over a 15 MHz signal bandwidth with a sampling frequency of 780 MHz. The figure-of-merit of the modulator is 191 fJ/conversion-step.

System Response of Automotive PEMFC with Dynamic Modeling under Load Change (차량용 PEMFC 동적 모델을 이용한 시스템 부하 응답 특성)

  • Han, Jaeyoung;Kim, Sungsoo;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The stringent emission regulation and future shortage of fossil fuel motivate the research of alternative powertrain. In this study, a system of proton exchange membrane fuel cell has been modeled to analyze the performance of the fuel cell system for automotive application. The model is composed of the fuel cell stack, air compressor, humidifier, and intercooler, and hydrogen supply which are implemented by using the Matlab/Simulink(R). Fuel cell stack model is empirical model but the water transport model is included so that the system performance can be predicted over various humidity conditions. On the other hand, the model of air compressor is composed of motor, static air compressor, and some manifolds so that the motor dynamics and manifold dynamics can be investigated. Since the model is concentrated on the strategic operation of compressor to reduce the power consumption, other balance of components (BOP) are modeled to be static components. Since the air compressor model is empirical model which is based on curve fitting of experiments, the stack model is validated with the commercial software and the experiments. The dynamics of air compressor is investigated over unit change of system load. The results shows that the power consumption of air compressor is about 12% to 25% of stack gross power and dynamic response should be reduced to optimize the system operation.