• Title/Summary/Keyword: dynamic power

Search Result 4,566, Processing Time 0.029 seconds

Performance Improvement and Power Consumption Reduction of an Embedded RISC Core

  • Jung, Hong-Kyun;Jin, Xianzhe;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of an embedded RISC core and a clock-gating algorithm with observability don’t care (ODC) operation to reduce the power consumption of the core. The branch prediction algorithm has a structure using a branch target buffer (BTB) and 4-way set associative cache that has a lower miss rate than a direct-mapped cache. Pseudo-least recently used (LRU) policy is used for reducing the number of LRU bits. The clock-gating algorithm reduces dynamic power consumption. As a result of estimation of the performance and the dynamic power, the performance of the OpenRISC core applied to the proposed architecture is improved about 29% and the dynamic power of the core with the Chartered 0.18 ${\mu}m$ technology library is reduced by 16%.

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Dynamic Power Management Structure for Energy Harvesting Pervasive Computing System

  • Bae, Hyeoungho;Kim, Dong-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a novel power management structure for an energy harvesting pervasive system is proposed. The system considers the power state of each subsystem to assign proper power sources. The switch matrix structure utilizes each power source to reduce the peak current of the battery. The power management structure can be interfaced to an embedded system power supply without significant design change.

  • PDF

STATIC AND DYNAMIC BEHAVIOR OF HIGH-CURRENT RECTIFIER DIODES IN RESISTANCE WELDING INVERTER POWER SOURCES

  • Mecke, Hubert;Doebbelin, Reinhard;Fischer, Wolfgang
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1003-1007
    • /
    • 1998
  • In recent years inverter power sources are more and more used for resistance welding processes. In this paper some results of investigation into the static and dynamic behavior of high-current rectifier diodes used in these inverter power sources will be discussed. By means of digital simulation, losses and efficiency have been determined depending on the power semiconductor parameters.

  • PDF

New Drowsy Cashing Method by Using Way-Line Prediction Unit for Low Power Cache (저전력 캐쉬를 위한 웨이-라인 예측 유닛을 이용한 새로운 드로시 캐싱 기법)

  • Lee, Jung-Hoon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.74-79
    • /
    • 2011
  • The goal of this research is to reduce dynamic and static power consumption for a low power cache system. The proposed cache can achieve a low power consumption by using a drowsy and a way prediction mechanism. For reducing the static power, the drowsy technique is used at 4-way set associative cache. And for reducing the dynamic energy, one among four ways is selectively accessed on the basis of information in the Way-Line Prediction Unit (WLPU). This prediction mechanism does not introduce any additional delay though prediction misses are occurred. The WLPU can effectively reduce the performance overhead of the conventional drowsy caching by waking only a drowsy cache line and one way in advance. Our results show that the proposed cache can reduce the power consumption by about 40% compared with the 4-way drowsy cache.

  • PDF

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

Dynamic Equivalents Program combined with Graphic Environments (그래픽환경을 갖춘 동태등가프로그램)

  • 임성정;윤용한;김재철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.32-36
    • /
    • 1992
  • This paper develops the dynamic equivalents program combined with graphic user interface(GUI), to solve the stability of large power system. The p개posed method is coherency-based dynamic equivalents for transient stability studies. The program also provides with pull-down menu and Hangout help information for users. The developed dynamic equivalents program is suitable for the transient stability studies of a large power system with lots of data. The dynamic equivalents demonstrated over the New England system with 39 buses and 10 generators.

  • PDF

An Empirical Analysis of Market Power in The Dallas-Forth Worth Milk Market (Dallas-Forth Worth 우유시장의 시장지배력 측정에 관한 연구)

  • KIM, Donghun
    • International Area Studies Review
    • /
    • v.14 no.3
    • /
    • pp.35-60
    • /
    • 2010
  • In this paper, we develop a dynamic structural model based on a dynamic supergame and measure market power for the Dallas-Forth Worth fluid milk market in the U.S. In particular, we compare the conduct parameter estimates from a static model with that from the dynamic model and illustrate bias in the market-power measure in a static model. And we also analyze the cyclical behavior of firm conduct. We find that the conduct parameter in a static model underestimates true market power if firms' behaviors are posited by a dynamic oligopoly game. We also verify that firm conduct in the Dallas-Forth Worth fluid milk market is countercyclical against demand shocks and expected future cost shocks. Our results indicate that the firms' conduct in the Dallas-Forth Worth fluid milk market is consistent with what dynamic oligopoly models predict. This implies that the firms consider not only the contemporary reactions of the other firms' but also future market competition. Therefore, the measurement of market power requires the specification of fully dynamic pricing relationship.

Simulator for a Micro-Turbine during Start-up by Constant Power Output Motoring Method using Starter (시동기의 정 출력 시동 기법에 의한 마이크로터빈 시동 구간의 운전 시뮬레이터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2028-2037
    • /
    • 2009
  • This paper presents the simulator for dynamic modeling of a MT(micro turbine) during start-up period. The simulator is implemented by modeling a dynamic power of main components of a MT including compressor, combustor and turbine. A modeling for a MT under steady state operation can be accurately built from thermodynamics analysis. But dynamic modeling during start-up period is very difficult because efficiency of main components is very low and the designed value has big error and nonlinear characteristics during start-up. In this paper, new method without using thermodynamics analysis during start-up is proposed for the simulator. The power models of main components are derived from analysis of the experimental operation data by test motoring using a electric starter under constant power output. The simulator is developed using MATLAB/Simulink. For constant power output control, sensorless vector inverter is designed and algorithms for starting from stall and method for controling a output power are proposed. The performance of developed simulator is verified by comparing experimental and simulation start-up results.

Supplementary Control of Conventional Coordinated Control for 1000 MW Ultra-supercritical Thermal Power Plant using Dynamic Matrix Control

  • Lee, Youngjun;Yoo, Euiyeon;Lee, Taehyun;Moon, Un-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • This paper proposes supplementary control of conventional coordinated control of a power plant which directly affects network frequency. The supplementary control with dynamic matrix control is applied for 1000 MW power plant with ultra-supercritical (USC) once-through boiler. The supplementary control signal is added to the boiler feedforward signal in the existing coordinated control logic. Therefore, it is a very practical structure that can maintain the existing multi-loop control system. This supplementary controller uses the step response model for the power plant system, and on-line optimization is performed at every sampling step. The simulation results demonstrate the effectiveness of the proposed supplementary control in a wide operating range of a practical 1000 MW USC power plant simulator. These results can contribute the stable operation of power system frequency.