• Title/Summary/Keyword: dynamic monitoring system

Search Result 554, Processing Time 0.025 seconds

Study on the Propagation Speed of the wide-area power system frequency for the application of FNET (광역 전력계통 주파수 감시망 적용을 위한 광역계통주파수의 전파속도에 관한 연구)

  • Kook, Kyung-Soo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1824-1831
    • /
    • 2009
  • This paper analyzes the propagation speed of the wide-area power system frequency. When a generator supplying the electric power to the grid is accidently tripped due to a disturbance on the systems, power system frequency suddenly drops during the transient period and this propagates from the location of the tripped generator to the other part of the systems like a wave. Since the propagation speed of the power system frequency depends on the own characteristics of power systems, its understanding from the perspective of the wide-area can help us in understanding power systems more correctly. In addition, the propagation speed of the power system frequency is used as a key parameter in the application study of IT based on the internet-based GPS synchronized frequency monitoring network (FENT) which has been recently implemented and operated in U.S. power systems. This paper simulates the generation trip on various locations in U.S. power systems deploying its latest dynamic model and calculates the propagation speed of the power system frequency for the application of FNET.

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Seamless Lawful Interception Handover for 3G IP Multimedia Subsystem (IMS)

  • In, Hoh Peter;Lee, Myoung-Rak;Kim, Do-Hoon;Kim, Nung-Hoe;Yoon, Byung-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1329-1345
    • /
    • 2011
  • After the 9.11 terror attack, lawful Interception (LI) has emerged as an important tool for anti-terrorist activity. Law enforcement agents and administrative government bodies effectively monitor suspicious target users of permanent IP-based network devices by LI in Packet Data Networks (PDNs). However, it is difficult to perform LI in monitoring migrating users from a location to another, who change their IPs due to the proliferation of portable Internet devices enabling 3G IP Multimedia Subsystems (IMS). The existing, manual handover technique in 3G IMS makes it even more difficult to continue the LI activities due to time-lag reissuance of LI authority warrants when the target users move to a new LI jurisdiction via a roaming service. Our proposed model is a seamless LI handover mechanism in 3G IMS to support mobility detection of the target users. The LI warrants are transferred to the new LI agent automatically with the target users when they move to a new LI jurisdiction. Thus, time-lag human intervention of reissuance of the LI warrants is removed and enables the LI authorities to continue monitoring. In the simulation of our proposed mechanism, the quality of lawful interception achieves a mean score of over 97.5% out of the possible 100% maximum score, whereas the quality of the existing mechanism has a mean score of 22.725%.

Pavement condition assessment through jointly estimated road roughness and vehicle parameters

  • Shereena, O.A.;Rao, B.N.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.317-346
    • /
    • 2019
  • Performance assessment of pavements proves useful, in terms of handling the ride quality, controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of pavement requires the identification of pavement roughness along with vehicle parameters. The present study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer Euler-Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model considered in this study is a half car model, fitted with accelerometers at specified points. The identification of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator (MVE) make use of a linear state-space formulation including roughness, to overcome the linearization difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the optimization scheme to yield estimates of vehicle parameters. The issue of ill-posedness of the problem is dealt with by introducing a regularization equivalent term in the objective function, specifically where a large number of parameters are to be estimated. Effect of different objective functions is also studied. The outcome of this research is an overall measure of pavement condition.

Development of FBG Accelerometer for Railway Tunnel Vibration (철도터널 진동 모니터링을 위한 광섬유 가속도계 개발)

  • Lee, Su-Hyung;Shin, Min-Ho;Kim, Hyun-Ki;Lee, Kyu-Wan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.364-369
    • /
    • 2011
  • For the safety management of tunnel, effective measurements should be continuously carried out. Most of sensors currently being applied for tunnels measure only the local status, thus many of them are needed to monitor an entire tunnel. For the railway tunnel where trains of same conditions are regularly operated, dynamic responses of tunnel structure to train operations can be a good index to estimate the deformation of tunnel structure in wide area. Meanwhile, the electromagnetic interference caused by overhead centenary in railway tunnel obstructs the use of electric-based sensors. In this study a brand new accelerometer using FBG optical fiber sensors is developed to solve these problems. Sensitivity and capacity of the accelerometer are enhanced with effective structural design of its components and verified with laboratory tests. A case history where the developed accelerometers were applied to a safety monitoring system of a high-speed train tunnel is presented. The performances of the developed accelerometers are validated from the measured acceleration data.

Real-Time Monitoring and Buffering Strategy of Moving Object Databases on Cluster-based Distributed Computing Architecture (클러스터 기반 분산 컴퓨팅 구조에서의 이동 객체 데이타베이스의 실시간 모니터링과 버퍼링 기법)

  • Kim, Sang-Woo;Jeon, Se-Gil;Park, Seung-Yong;Lee, Chung-Woo;Hwang, Jae-Il;Nah, Yun-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.75-89
    • /
    • 2006
  • LBS (Location-Based Service) systems have become a serious subject for research and development since recent rapid advances in wireless communication technologies and position measurement technologies such as global positioning system. The architecture named the GALIS (Gracefully Aging Location Information System) has been suggested which is a cluster-based distributed computing system architecture to overcome performance losses and to efficiently handle a large volume of data, at least millions. The GALIS consists of SLDS and LLDS. The SLDS manages current location information of moving objects and the LLDS manages past location information of moving objects. In this thesis, we implement a monitoring technique for the GALIS prototype, to allow dynamic load balancing among multiple computing nodes by keeping track of the load of each node in real-time during the location data management and spatio-temporal query processing. We also propose a buffering technique which efficiently manages the query results having overlapped query regions to improve query processing performance of the GALIS. The proposed scheme reduces query processing time by eliminating unnecessary query execution on the overlapped regions with the previous queries.

  • PDF

Design and Implementation of Real-Time Operating System for Sensor Networks (센서 네트워크용 실시간 운영체제의 설계 및 구현)

  • Kang, Hui-Sung;Jeon, Shang-Ho;Jeong, Geun-Jae;Lee, Soong-Yeol;Kim, Young-Hee;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.51-62
    • /
    • 2007
  • Recently microcontrollers are being used in sensor networks to handle sophisticated control and monitoring activities. As applications become more sophisticated, their design and development processes become more complex which consequently necessitates the use of an operating system to manage the complexity and provide an abstraction for portability of code. This paper presents a Low-power real-time operating system, called UbiFOS-USN, designed for sensor networks. We present some of the features that make UbiFOS-USN appropriate especially for small, low-cost microcontrollers typically found in sensor networks. Through experimental results, we show that UbiFOS-USN is quite efficient for a sensor network, both in terms of system performance and memory requirement.

Unknown Threats Detection by Using Incremental Knowledge Acquisition (상황 지식 축적에 의한 알려지지 않은 위협의 검출)

  • Park, Gil-Cheol;Cooke, Hamid B. M.;Kim, Yang-Sok;Kang, Byeong-Ho;Youk, Sang-Jo;Lee, Geuk
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Detecting unknown threats is a paradox ; how do you detect a threat if it is not known to exist? The answer is that unknown threat detection is the process of making a previously unknown threat identifiable in the shortest possible time frame. This paper examines the possibility of creating an unknown threat detection mechanism that security experts can use for developing a flexible protection system for networks. A system that allows the detection of unknown threats through monitoring system and the incorporation of dynamic and flexible logics with situational knowledge is described as well as the mechanisms used to develop such a system is illustrated. The system not only allows the detection of new threats but does so in a fast and efficient manner to increase the available time for responding to these threats.

  • PDF

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Dynamic Characteristics of Seohae Cable-stayed Bridge Based on Long-term Measurements (장기계측에 의한 서해대교 사장교의 동특성 평가)

  • Park, Jong-Chil;Park, Chan-Min;Kim, Byeong-Hwa;Lee, Il-Keun;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.115-123
    • /
    • 2006
  • This paper presents long-term dynamic characteristics of a cable-stayed bridge where installed SHM (Structural Health Monitoring) system. Modal parameters such as natural frequencies and mode shapes are identified by modal analysis using three dimensional finite element model. The developed baseline model has a good correlation with measured natural frequencies identified from field ambient vibrations. By statistical data processing between measured natural frequencies and temperatures, it is demonstrated that the natural frequency is in linearly inverse proportion to the temperature. The estimation of temperature effects against frequency variations is performed. Mode shapes are identified from the TDD (Time Domain Decomposition) technique for ambient vibration measurements. Finally, these results demonstrate that the TDD method can apply to identify modal parameters of a cable-stayed bridge.