• Title/Summary/Keyword: dynamic monitoring system

Search Result 554, Processing Time 0.033 seconds

A Background Subtraction Algorithm for Fence Monitoring Surveillance Systems (담장 감시 시스템을 위한 배경 제거 알고리즘)

  • Lee, Bok Ju;Chu, Yeon Ho;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2015
  • In this paper, a new background subtraction algorithm for video based fence monitoring surveillance systems is proposed. We adopt the sampling based background subtraction technique and focus on the two main issues: handling highly dynamic environment and handling the flickering nature of pulse based IR (infrared) lamp. Natural scenes from fence monitoring system are usually composed of several dynamic entities such as swaying trees, moving water, waves and rain. To deal with such dynamic backgrounds, we utilize the confidence factor for each background value of the input image. For the flickering IR lamp, the original sampling based technique is extended to handle double background models. Experimental results revealed that our method works well in real fence monitoring surveillance systems.

A Study on the Decision Determination of Replenishment using Dynamic Approach in (1,m)Type Inventory System (DP법을 이용한 (1,m)형 재고시스템의 보충 의사결정에 관하여)

  • 이재원;이철영;조덕필
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.37-45
    • /
    • 2000
  • Centralized safety stock in a periodic replenishment system which consists of one central warehouse and m regional warehouse can reduce backorders allocating the centralized safety stocks to regional warehouse in a certain instant of each replenishment cycle. If the central warehouse can not monitoring inventories in the regional warehouse, then we have to predetermine the instant of allocation according to demand distribution and this instant must be same for all different replenishment cycle. However, transition of inventory level in each cycle need not to be same, and therefore different instant of the allocation may results reduced shortage compare to the predetermined instant of allocation. In this research, we construct a dynamic model based on the assumption of monitoring inventories in the regional warehouse everyday, and develop an algorithm minimize shortage in each replenishment cycle using dynamic programming approach.

  • PDF

Minimize Shortages in Two-Phase Periodic Replensihment System Using Dynamic Approach ((1, m)형 재고시스템에 의한 안전재고의 집중과 최적분배계획에 관한 연구)

  • 이재원;이철영;조덕필
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.83-90
    • /
    • 1999
  • Centralized safety stock in a periodic replenishment system which consists of one central warehouse and m regional warehouse can reduce backorders allocation the centralized safety stocks to regional warehouse in a certain instant of each replenishment cycle. If the central warehouse can not monitoring inventories in the regional warehouse, then we have to predetermine the instant of allocation according to demand distribution and this instant must be same for all different replenishment cycle. However, transition of inventory level in each cycle need not to be same, and therefore different instant of the allocation may results reduced shortage compare to the predetermined instant of allocation. In this research, we construct a dynamic model based on the assumption of monitoring inventories inventories in the regional warehouse everyday, and develop an algorithm minimize shortage in each replenishment cycle using dynamic programming approach.

A Study on Analysis of Propagation Speed of Power Frequency by Generation Drop (발전기 탈락에 따른 주파수의 전파속도 해석에 관한 연구)

  • Kim, Hak-Man;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.295-300
    • /
    • 2014
  • The frequency is an important operating parameter of a power system. There is an increasing importance of constant monitoring of frequency to achieve stable power supply by WAMS(wide area monitoring system) and FNET(Frequency Monitoring Network). This paper is part of development of a network-based frequency monitoring and failure prediction system for wide-area intelligent protection relaying. In this paper, analysis of propagation speed of power frequency by generation drop using the PSS/E was carried out. For dynamic analysis, the 11 metropolitan areas offices of KEPCO divided into five groups of Seoul, Gangwon, Chungcheong, Honam, and Yeongnam group, study was performed.

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Dynamic Resistance Monitoring in Primary Circuit during Resistatnce Spot Welding (저항 점용접의 1차 회로 동저항 모니처링에 관한 연구)

  • 조용준;황정복;신현일;배경민;권태용;이세헌
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.129-132
    • /
    • 1998
  • The dynamic resistance monitoring in primary circuit or T/C is one of the important issues in that in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. It is well known that tile dynamic resistance curve gives us very useful information about nugget growth and weldability. In the present paper, a new dynamic resistance detecting method is presented as a practical manner of weld quality assurance using instantaneous current and voltage measured by primary circuit. Primary dynamic resistance patterns are basically similar to those of the secondary, but there is evident advantage such as no extra devices are needed to obtain the quality assurance index and eventually feedback control will be possible caused by T/C based monitoring system.

  • PDF

Characterizing the Spatial-temporal Distribution of Soil Moisture for Sulmachun Watershed Through a Continuous Monitoring (설마천 유역의 토양수분 장기 모니터링을 통한 토양수분 시공간 변화양상의 특성화)

  • Lee, Ga Young;Kim, Ki Hoon;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.209-214
    • /
    • 2004
  • Time Domain Reflectometry with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture in a mountainous hillslope. An intensive surveying was performed to build a refined digital elevation model and flow determination algorithms with inverse surveying have been applied to establish an efficient soil monitoring system. Steady state wetness index, quasi-dynamic wetness index and fully dynamic wetness index have been calculated. Continuous monitoring of soil moisture data were analyized with wetness indices. Limitations and hydrological interpretations of this approach have beer discussed.

  • PDF

Design of a Portable Activity Monitoring System (휴대용 활동 상태 모니터링 시스템의 설계)

  • Lee, Seung-Hyung;Park, Ho-Dong;Yoon, Hyung-Ro;Lee, Kyung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.32-38
    • /
    • 2002
  • This paper describes a development of a portable physical activity monitoring system using two accelerometers to quantify physical activity. The system hardware consists of two piezoresistive accelerometers, amplifiers with gain of 30, lowpass filters with cut-off frequency of 15Hz, offset control circuits, one-chip microcontroller and flash memory card. In order to evaluate the performance of the system we acquired 3 channel data at 32 sample/sec from body-fixed accelerometers in chest and right upper leg. And then the acquired data were processed by MatLab on personal computer. We tried to distinguish not only fundamental actions which are steady-state activities such as standing, sitting, and lying but also dynamic activities with walking, up a stairway, down a stairway, and running. Five subjects participated the evaluation process which compare the video data with the measured data. As a result, the activity classification rate of 90.6% on average was obtained. Overall results showed that the steady-state activities could be classified from the low component of 3-axis acceleration signal and dynamic activities could be distinguished from frequency analysis using wavelet transform and FFT. Finally, we could find that this system can be applied to acquire and analyze the static and dynamic physical activity data.

Dynamic torsional response measurement model using motion capture system

  • Park, Hyo Seon;Kim, Doyoung;Lim, Su Ah;Oh, Byung Kwan
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.679-694
    • /
    • 2017
  • The complexity, enlargement and irregularity of structures and multi-directional dynamic loads acting on the structures can lead to unexpected structural behavior, such as torsion. Continuous torsion of the structure causes unexpected changes in the structure's stress distribution, reduces the performance of the structural members, and shortens the structure's lifespan. Therefore, a method of monitoring the torsional behavior is required to ensure structural safety. Structural torsion typically occurs accompanied by displacement, but no model has yet been developed to measure this type of structural response. This research proposes a model for measuring dynamic torsional response of structure accompanied by displacement and for identifying the torsional modal parameter using vision-based displacement measurement equipment, a motion capture system (MCS). In the present model, dynamic torsional responses including pure rotation and translation displacements are measured and used to calculate the torsional angle and displacements. To apply the proposed model, vibration tests for a shear-type structure were performed. The torsional responses were obtained from measured dynamic displacements. The torsional angle and displacements obtained by the proposed model using MCS were compared with the torsional response measured using laser displacement sensors (LDSs), which have been widely used for displacement measurement. In addition, torsional modal parameters were obtained using the dynamic torsional angle and displacements obtained from the tests.