• Title/Summary/Keyword: dynamic modal analysis

Search Result 933, Processing Time 0.024 seconds

A Study on the Characteristic Analysis of a Tilting Index Table for Machine Tools (공작기계 틸팅 인덱스 테이블의 특성 해석에 관한 연구)

  • Choi, Chi-Hyuk;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.7-12
    • /
    • 2011
  • In the recent field of 5-axis machine tools, it is necessary to improve machining ability. The tilting index table is a key unit in order to manufacture some non-rotational and 3-dimensional parts by using conventional machining centers. In this study, the structural analysis of a tilting index table is carried out and the displacement and distribution of stress in the tilting index table is analysed to design the table safely. The modal analysis is performed in order to confirm the frequency response about the vibration having a large effect on the machine tools. The dynamic analysis is performed in order to confirm the rigidity, and the structural stability has been verified.

Dynamic modeling of rubber elements in an engine mount system (엔진 마운트용 고무의 동역학적 모델링)

  • 박석태;정경렬;이종원;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.689-697
    • /
    • 1986
  • In the present work a three degree of freedom modeling of a cylindrical rubber element is studied and its applications to an engine mount system are discussed using a simple test structure. The three degree of freedom model for the rubber mount is composed of three mutually orthogonal springs and dampers jointed at the elastic center of the mount. The test structure is designed and manufactured so simple that its mass center and moment of inertia are accurately and easily obtained. The dynamic properties of each rubber mount, i.e., complex stiffnesses, are experimentally identified using hydraulic exciter and used to predict the modal parameters of the test structure mount system by analytical modal analysis. The predicted modal parameters of the system agree well with those estimated by experimental modal analysis. Hence the three DOF model of the rubber mount is proposed for the practical design of an engine mount system.

Structural damping for soil-structure interaction studies

  • Lutes, Loren D.;Sarkani, Shahram
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • A soil-structure interaction formulation is used here which is based on consideration of the dynamics of the structure with a free, rather than a fixed, base. This approach is shown to give a quite simple procedure for coupling the dynamic characteristics of the structure to those of the foundation and soil in order to obtain a matrix formulation for the complete system. In fixed-base studies it is common to presume that each natural mode of the structure has a given fraction of critical damping, and since the interaction formulation uses a free-base model, it seems natural for this situation to assign the equal modal damping values to free-base modes. It is shown, though, that this gives a structural model which is significantly different than the one having equal modal damping in the fixed-base modes. In particular, it is found that the damping matrix resulting in equal modal damping values for free-based modes will give a very significantly smaller damping value for the fundamental distortional mode of the fixed-base structure. Ignoring this fact could lead one to attribute dynamic effects to interaction which are actually due to the choice of damping.

Developing the Excitation Testing Module with LabVIEW (LabVIEW를 이용한 Exciter 가진시험 모듈 개발)

  • Choi, Ki-Soo;Jung, Wei-Bong;Won, Sung-Gyu;Ahn, Se-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.37-41
    • /
    • 2007
  • Fast Fourier Transformation(FFT) is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system. Excitation is a factor or process making noise or vibration. It's typical and simple experimental method widely used for catching hold of dynamic peculiar characters and modal behaviors of system by frequency analysis. There are harmonic excitation, impact excitation, random excitation, sweep excitation, chirp excitation and so on as the ideal method in an experiment using exciter. In this thesis, excitation testing module for NI-PXI equipment is developed. The analyzing module is developed with LabVIEW tool. A user can generate each waveform for shaking a structure and see quickly and easily modal shape of system with this module. This developed module will be expected to build up more convenient and serviceable measurement system.

  • PDF

Experimental Study on Condition Evaluation for Railway Ballasted Track (자갈궤도의 상태평가를 위한 실험적 연구)

  • Choi, Jung-Youl;Bahng, Eun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.152-157
    • /
    • 2018
  • The degradation and damage of the components for ballasted track could be caused a serious problem for railway safety. Therefore, the integrity evaluation of ballasted track condition is important to ensure and predict that the track safety and track maintenance. Various track components such as rail pad, ballast, sleeper, and rail that are widely used in Republic of Korea and represent a range of physical properties have been selected for this research. In this study, the experimental modal analysis was performed by the non-destructive testing. Modal test results were obtained from the field test and used to assess the condition of the track components. From the field test, the system of ballasted track was found to be simplified as a two-degree-of-freedom(2DOF) dynamic system. The condition of track component was found to directly affect the dynamic response of ballasted tracks. As the results, the dynamic properties of the track component was depend on the track condition and was distributed more roughly and over a wider range than its initial design values. Further, the methodology presented in this study is possible to determine experimentally the fundamental track parameters which are required in the numerical analysis, and also are useful for the safety assessment of track condition.

Modal Combination Method for Prediction of Story Earthquake Load Profiles (층지진하중분포 예측을 위한 모드조합법)

  • Eom, Tae-Sung;Lee, Hye-Lin;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.65-75
    • /
    • 2006
  • Nonlinear pushover analysis is used to evaluate the earthquake response of building structures. To accurately predict the inelastic response of a structure, the prescribed story load profile should be able to describe the earthquake force profile which actually occurs during the time-history response of the structure. In the present study, a new modal combination method was developed to predict the earthquake load profiles of building structures. In the proposed method, multiple story load profiles are predicted by combining the modal spectrum responses multiplied by the modal combination factors. Parametric studies were performed far moment-resisting frames and walls. Based on the results. the modal combination factors were determined according to the hierarchy of each mode affecting the dynamic responses of structures. The proposed modal combination method was applied to prototype buildings with and without vertical irregularity. The results showed that the proposed method predicts the actual story load profiles which occur during the time-history responses of the structures.

Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures (다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구)

  • Kwak, Hyo-Gyoung;Hong, Seong Jin;Kim, Young Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.497-512
    • /
    • 2006
  • In this paper, a simple but effective analysis procedure to estimate seismic capacities of multi-span continuous bridge structures is proposed on the basis of modal pushover analysis considering all the dynamic modes of structure. Unlike previous studies, the proposed method eliminates the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio and an approximate elastic deformed shape. Moreover, in addition to these two introductions, the use of an appropriate distributed load {P} makes it possible to predict the dynamic responses for all kinds of bridge structures through a simpler analysis procedure. Finally, in order to establish the validity and applicability of the proposed method, correlation studies between rigorous nonlinear time history analysis and the proposed method are conducted for multi-span continuous bridges.

Dynamic analysis of the floor structures with different floor plans in apartments (아파트 평면형상에 따른 바닥판의 동특성 해석)

  • Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1459-1462
    • /
    • 2007
  • In this study, vibration characteristics of concrete slab were investigated through FEM analysis. Four different floor plans with the floor area of $100{\sim}130m^2$ were chosen to be analyzed. Boundary conditions of two dimensional finite element models were determined based on the modal test results. Results showed that mode shapes were formed somewhat different according to the floor plan and the contribution of 1st mode on the floor vibration is generally the highest. Through the transient analysis, it was also found that floor plan, expecially connection of the living room with the kitchen, affected the vibration acceleration levels.

  • PDF

Dynamic Analysis on a Hydraulic Press for Micro-Stamping Using Sensitivity Analysis (감도 해석을 이용한 미세 스탬핑 장치의 동적 해석)

  • Choi H. G.;Lee J. W.;Kim M. J.;Lee D. S.;Lee J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.221-224
    • /
    • 2001
  • The dynamic characteristics of a hydraulic press for micro-stamping are investigated by Finite Element Analysis. This machine requires high precision in producing milli-structure of electric products such as TFT-LCD back-up light reflector. First, the modal analysis of the parts and the assembly of the hydraulic press is performed. Then, the sensitivity analysis is carried out. The results show that the bearing stiffness and the base mounting stiffness affect the specific mode shapes.

  • PDF

Dynamic Modeling and Input Shaping Control of a Positioning Stage (위치결정 스테이지에 대한 동적 모델링과 입력성형 제어)

  • Park, S.W.;Hong, S.W.;Choi, H.S.;Jang, J.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • This paper presents the dynamic analysis and input shaping control of a positioning stage. Vibration characteristics of the positioning stage are affected not only by the structural dynamics but also by the servo actuators that consist of the mechanism; driving motor and controller. This paper proposes an integrated dynamic model to accommodate both the structural dynamics and the servo actuators. Theoretical modal analysis with a commercial finite element code is carried out to investigate the dynamic characteristics of the experimental positioning stage. Experiments are performed to validate the theoretical modal analysis and estimate the equivalent stiffness due to the servo actuators. This paper deals with an input shaping scheme to suppress vibration of the positioning stage. Input shapers are systematically implemented for the positioning stage in consideration of its dynamics. The effects of servo control gain are also investigated. The experiments show that input shaping effectively removes residual vibrations and then improves the performance of positioning stage.