• 제목/요약/키워드: dynamic mechanical properties.

검색결과 1,047건 처리시간 0.03초

반복 전단.인장 변형에 따른 데님 직물의 피로도에 관한 연구 (Fatigue Phenomenon of Mechanical Properties in Denim Fabrics for Slacks during Repeated Shear and Tensile Deformation)

  • 이창미;권오경;박희웅
    • 한국의류학회지
    • /
    • 제20권6호
    • /
    • pp.975-982
    • /
    • 1996
  • This study was conducted to examine the fatigue phenomenon of mechanical properites in denim fabrics for slacks during repeated shear and tensile deformation by analysing the change in the basic dynamic properties of fabrics on the basic of experiments to obtain the basic data necessary to measure their fatigue. In addition, this study was carried out by allowing these denim fabrics at market to go through the repeated deformation under such different loads as 500 gf/cm2 and 1000 gf/cm2 by using a simulated fatigue tester, by calculating both dynamic properties and hand value (HV) of these fabrics with KES-F system and then by obtaining the THV through these calculated properties. The results are as follows: 1 The fatigue phenomenon of dynamic properties was remarkably shown by the repeated shear and tensile deformation, while the increase of hysterical plastic substances was also remarkable in these shearing and bending properties. 2. The elasticity values of tensile, bending and compression properties, such as, B and G were reduced: whereas RT and RC values increased. It was shown, then, that those fabrics lost their elasticity and became flexible and soft with the increase of fatigue. 3. The fatigue phenomenon of hand value also showed that those fabrics became soft in relation with the change of all dynamic properties, and that their performance was also change to flexible hand value. 4. TRhe degree of fatigue was also shown by the loads given to the repeated deformation. It was shown that the fatigue was higher for the tensile load of 1000 gf/cm3 than did the standard load of 500 gf/cm3 It is necessary, therefore, to consider the load in accordance with their usage when examining the fatigue phenomenon with respect to the dynamic properties of clothing materials. 5. The loads were nearly not influenced by the change in the general hand value tended to show a little of increase with the increase of fatigue, Based on those results, it seems that the fatigue phenomonon is related to the loads given to the repeated deformation.

  • PDF

Hygrothermal effects on dynamic instability of a laminated plate under an arbitrary pulsating load

  • Wang, Hai;Chen, Chun-Sheng;Fung, Chin-Ping
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.103-124
    • /
    • 2013
  • This paper studies the static and dynamic characteristics of composite plates subjected to an arbitrary periodic load in hygrothermal environments. The material properties of composite plates are depended on the temperature and moisture. The governing equations of motion of Mathieu-type are established by using the Galerkin method with reduced eigenfunction transforms. A periodic load is taken to be a combination of axial pulsating load and bending stress in the example problem. The regions of dynamic instability of laminated composite plates are determined by solving the eigenvalue problems based on Bolotin's method. The effects of temperature rise and moisture concentration on the dynamic instability of laminated composite plates are investigated and discussed. The influences of various parameters on the instability region and dynamic instability index are also investigated. The numerical results reveal that the influences of hygrothermal effect on the dynamic instability of laminated plates are significant.

Weis-Fogh형 선박 추진기구의 역학적 특성계산 (Numerical calculation of the dynamic properties of Weis-Fogh type ship's propulsion mechanism)

  • 노기덕
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1518-1526
    • /
    • 1997
  • The dynamic properties of a ship's propulsion mechanism of Weis-Fogh type are studied by the discrete vortex method. The wing in the channel is approximated by a finite number of bound vortices and free vortices representing the separated flow are introduced from the trailing edge of the wing. The time histories of the thrust, the drag, and the moment acting on the wing are calculated, including the unsteady force due to the change of strength of the bound vortices. These calculated results show a similar tendency to the experimental ones qualitatively and the dynamic properties of this propulsion mechanism are numerically clarified.

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load

  • Tahami, F. Vakili;Biglari, H.;Raminnea, M.
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.515-526
    • /
    • 2017
  • Dynamic response of functionally graded Carbon nanotubes (FG-CNT) reinforced pipes conveying viscous fluid under accelerated moving load is presented. The mixture rule is used for obtaining the material properties of nano-composite pipe. The radial force induced by viscous fluid is calculated by Navier-Stokes equation. The material properties of pipe are considered temperature-dependent. The structure is simulated by Reddy higher-order shear deformation shell theory and the corresponding motion equations are derived by Hamilton's principal. Differential quadrature (DQ) method and the Integral Quadrature (IQ) are applied for analogizing the motion equations and then the Newmark time integration scheme is used for obtaining the dynamic response of structure. The effects of different parameters such as boundary conditions, geometrical parameters, velocity and acceleration of moving load, CNT volume percent and distribution type are shown on the dynamic response of pipe. Results indicate that increasing CNTs leads to decrease in transient deflection of structure. In accelerated motion of the moving load, the maximum displacement is occurred later with respect to decelerated motion of moving load.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

홉킨스바 장치를 이용한 분말금속의 동적 특성에 관한 수치해석적 연구 (A Numerical Study on the Dynamic Characteristics of Power Metal using Split Hopkinson Pressure Bar)

  • 황두순;이승우;홍성인
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2972-2979
    • /
    • 2000
  • Dynamic characteristics of powder metal is very important to mechanical structures requiring high strength or endurance for impact loading. But owing to distinctive property of powder metal, that is relative, it has been investigated restrictively compared to static characteristics. The objectives of this study is to investigate dynamic characteristics of powder metal and compare it to a fully density material. To find the characteristics, an explicit finite element method is used for simulation of Split Hopkinson Pressure Bar experiment based on the stress wave propagation theory. We obtained a dynamic stress-strain relationship and dynamic behavior of powder metal, as well as the variation of material properties during dynamic deformation.

Glass powder admixture effect on the dynamic properties of concrete, multi-excitation method

  • Kadik, Abdenour;Boutchicha, Djilali;Bali, Abderrahim;Cherrak, Messaouda
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.671-678
    • /
    • 2020
  • In this work, the dynamic properties of a high performance concrete containing glass powder (GP) was studied. The GP is a new cementitious material obtained by recycling waste glass presenting pozzolanic activity. This eco-friendly material was incorporated in concrete mixes by replacing 20 and 30% of cement. The mechanical properties of building materials highly affect the response of the structure under dynamic actions. First, the resonant vibration frequencies were measured on concrete plate with free boundary conditions after 14, 28 and 90 curing days by using an alternative vibration monitoring technique. This technique measures the average frequencies of several excitations done at different points of the plate. This approach takes into account the heterogeneity of a material like concrete. So, the results should be more precise and reliable. For measuring the bending and torsion resonant frequencies, as well as the damping ratio. The dynamic properties of material such as dynamic elastic modulus and dynamic shear modulus were determined by modelling the plate on the finite element software ANSYS. Also, the instantaneous aroused frequency method and ultrasound method were used to determine the dynamic elastic modulus for comparison purpose, with the results obtained from vibration monitoring technique.

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

Evolution of dynamic mechanical properties of heated granite subjected to rapid cooling

  • Yin, Tubing;Zhang, Shuaishuai;Li, Xibing;Bai, Lv
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.483-493
    • /
    • 2018
  • Experimental study of the deterioration of high-temperature rock subjected to rapid cooling is essential for thermal engineering applications. To evaluate the influence of thermal shock on heated granite with different temperatures, laboratory tests were conducted to record the changes in the physical properties of granite specimens and the dynamic mechanical characteristics of granite after rapid cooling were experimentally investigated by using a split Hopkinson pressure bar (SHPB). The results indicate that there are threshold temperatures ($500-600^{\circ}C$) for variations in density, porosity, and P-wave velocity of granite with increasing treatment temperature. The stress-strain curves of $500-1000^{\circ}C$ show the brittle-plastic transition of tested granite specimens. It was also found that in the temperature range of $200-400^{\circ}C$, the through-cracks induced by rapid cooling have a decisive influence on the failure pattern of rock specimens under dynamic load. Moreover, the increase of crack density due to higher treatment temperature will result in the dilution of thermal shock effect for the rocks at temperatures above $500^{\circ}C$. Eventually, a fitting formula was established to relate the dynamic peak strength of pretreated granite to the crack density, which is the exponential function.