• Title/Summary/Keyword: dynamic load

Search Result 4,080, Processing Time 0.028 seconds

Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel (동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.

Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory

  • Simsek, Mesut
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.59-76
    • /
    • 2011
  • Dynamic analysis of an embedded single-walled carbon nanotube (SWCNT) traversed by a moving nanoparticle, which is modeled as a moving load, is investigated in this study based on the nonlocal Timoshenko beam theory, including transverse shear deformation and rotary inertia. The governing equations and boundary conditions are derived by using the principle of virtual displacement. The Galerkin method and the direct integration method of Newmark are employed to find the dynamic response of the SWCNT. A detailed parametric study is conducted to study the influences of the nonlocal parameter, aspect ratio of the SWCNT, elastic medium constant and the moving load velocity on the dynamic responses of SWCNT. For comparison purpose, free vibration frequencies of the SWCNT are obtained and compared with a previously published study. Good agreement is observed. The results show that the above mentioned effects play an important role on the dynamic behaviour of the SWCNT.

TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • A steel high-rise building (HRB) with 15 stories was analyzed under the dynamic load of wind or four different earthquakes taking into consideration the effect of soil-structure interaction (SSI) and using tuned mass damper (TMD) devices to resist these types of dynamic loads. The behavior of the steel HRB as a lightweight structure subjected to dynamic loads is critical especially for wind load with effect maximum at the top of the building and reduced until the base of the building, while on the contrary for seismic load with effect maximum at the base and reduced until the top of the building. The TMDs as a successful passive resistance method against the effect of wind or earthquakes is used to mitigate their effects on the steel high-rise building. Lateral displacements, top accelerations and straining actions were computed to judge the effectiveness of the TMDs on the response of the steel HRB subjected to wind or earthquakes.

Dynamic Load Analysis of Aircraft Landing Gear (항공기 착륙장치 동하중 해석)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Role of landing gear is to absorb energy which is generated by aircraft ground maneuvering and landing. Generally, in order to absorb the impact energy, oleo-pneumatic type shock absorber is used in aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorption efficiency and is light in weight because structure of oleo-pneumatic type shock strut is relatively simple. In this study, dynamic load analysis for swinging arm type landing gear was performed to predict landing loads. Modeling of landing gear was conducted with MSC.ADAMS, and dynamic landing loads were analyzed based on ADS-29. Optimum landing loads were generated through adjustment of damping orifice and the analysis results were presented with various aircraft attitude.

  • PDF

An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method (공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석)

  • 박신욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load

  • Zhu, S.Q.;Chen, X.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.753-765
    • /
    • 2007
  • The response histories and distribution of dynamic interlaminar stresses in composite laminated plates under free vibration and thermal load is studied based on a thermoelastodynamic differential equations. The stacking sequence of the laminated plates may be arbitrary. The temperature change is considered as a linear function of coordinates in planes of each layer. The dynamic mode of displacements is considered as triangle series. The in-plane stresses are calculated by using geometric equations and generalized Hooke's law. The interlaminar stresses are evaluated by integrating the 3-D equations of equilibrium, and utilizing given boundary conditions and continuity conditions of stresses between layers. The response histories and distribution of interlaminar stress under thermal load are presented for various vibration modes and stacking sequence. The theoretical analyses and results are of certain significance in practical engineering application.

On dynamic deflection analysis of sandwich beams under thermal and pulse loads

  • Mamoon A.A. Al-Jaafari;Haider Ali Hussein;Abdulaziz Saud Khider;Raad M. Fenjan;Nadhim M. Faleh
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.195-202
    • /
    • 2023
  • Dynamic deflection analysis of sandwich beams with cellular core under thermal and pulse loads has been performed in the present article. The cellular core sandwich beam has two layers fortified by graphene oxide powder (GOP) which are micromechanically modeled by Halpin-Tsai formulation. The pulse load has blast type and is applied on the top side of sandwich beam. The system of equations has been developed based on higher-order beam theory and Ritz method. Then, they are solved in Laplace domain to derive the dynamic deflections. The dependency of beam deflection on temperature variation, GOP content, pulse load duration/location and core relative density has been studied in detail.

An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation

  • Mohammadreza Eghbali;Seyed Amirhosein Hosseini
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.549-564
    • /
    • 2024
  • This paper aims to analyze the dynamic response of thermoelectric carbon nanotube-reinforced composite (CNTRC) beams under moving harmonic load resting on Pasternak elastic foundation. The governing equations of thermoelectric CNTRC beam are obtained based on the Karama shear deformation beam theory. The beams are resting on the Pasternak foundation. Previous articles have not performed the moving load mode with the analytical method. The exact solution for the transverse and axial dynamic response is presented using the Laplace transform. A comparison of previous studies has been published, where a good agreement is observed. Finally, some examples were used to analyze, such as excitation frequency, voltage, temperature, spring constant factors, the volume fraction of Carbon nanotubes (CNTs), the velocity of a moving harmonic load, and their influence on axial and transverse dynamic and maximum deflections. The advantages of the proposed method compared to other numerical methods are zero reduction of the error percentage that exists in numerical methods.

Dynamic Snapping and Frequency Characteristics of 3-Free-Nodes Spatial Truss Under the Periodic Loads (주기 하중을 받는 3-자유절점 공간 트러스의 동적 불안정 현상과 주파수 특성)

  • Shon, Sudeok;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.149-158
    • /
    • 2020
  • The governing equation for a dome-type shallow spatial truss subjected to a transverse load is expressed in the form of the Duffing equation, and it can be derived by considering geometrical non-linearity. When this model under constant load exceeds the critical level, unstable behavior is appeared. This phenomenon changes sensitively as the number of free-nodes increases or depends on the imperfection of the system. When the load is a periodic function, more complex behavior and low critical levels can be expected. Thus, the dynamic unstable behavior and the change in the critical point of the 3-free-nodes space truss system were analyzed in this work. The 4-th order Runge-Kutta method was used in the system analysis, while the change in the frequency domain was analyzed through FFT. The sinusoidal wave and the beating wave were utilized as the periodic load function. This unstable situation was observed by the case when all nodes had same load vector as well as by the case that the load vector had slight difference. The results showed the critical buckling level of the periodic load was lower than that of the constant load. The value is greatly influenced by the period of the load, while a lower critical point was observed when it was closer to the natural frequency in the case of a linear system. The beating wave, which is attributed to the interference of the two frequencies, exhibits slightly more behavior than the sinusoidal wave. And the changing of critical level could be observed even with slight changes in the load vector.

A Study of Optimal Load Follow Control in Pressurized Water Reactors (감압경수형 원자로의 최적부하추종제어에 관한 연구)

  • 김락규;박상휘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.12
    • /
    • pp.491-497
    • /
    • 1985
  • An applicaton of the linear optimal control theory to the problem or load follow control in pressurized water reactors (PWR) is investigated. In order to perform the steady-state and load follow operation in PWR, a nonlinear model for the reactor and steam generator is derived and linearized at 50% rated power. Simulation tests are performed for 10% demanded load. Comparing the dynamic response of the newly developed optimal load follow controller with those of the integral error feedback controller proposed by Yang, the rise time of dynamic response of the former is about 15 seconds faster than those of the latter, thus the results indicate that the fast response of the optimal load follow controller is verified. The results of this work are directly applicable to the design of the load follow control systems for commercially operated PWRs.

  • PDF