• 제목/요약/키워드: dynamic geometry system

검색결과 129건 처리시간 0.025초

정렬불량을 가진 기어 커플링의 동역학적 모델 개발에 관한 연구 (I) - 기어 커플링의 동적모델 구축을 중심으로- (A Study on Development the Dynamic Model to Misaligned Gear Coupling (I) - The Focus on Development of Dynamic Model to n Gear Coupling)

  • 김병옥;김용철
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.857-863
    • /
    • 2003
  • In rotating machinery, unbalance and misalignment are major concerns in vibration. Unbalance can be eliminated by balancing procedure to some degree. but little work has been done on the vibrations that occur in a misaligned rotor system. Currently, no generalized theoretical model based on a rotor system with flexible coupling is available to describe the vibrations caused by misalignment. As a part of systematic investigation on the misalignment, first of all, the study on flexible coupling with misalignment should be preceded. In this study, the geometry and reaction force and moment of a gear coupling with misalignment was investigated, also the theoretical model of a gear coupling with misalignment was presented by using the relationship between geometry and moment of gear coupling. It is expected that the proposed procedure can be applied to derive the theoretical model of other couplings.

PX-An Innovative Safety Concept for an Unmanned Reactor

  • Yi, Sung-Jae;Song, Chul-Hwa;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.268-273
    • /
    • 2016
  • An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

모델차수축소기법을 이용한 회전체의 동해석 (Dynamic Analysis of Rotating Bodies Using Model Order Reduction)

  • 한정삼
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF

공기 베어링 주축의 자동설계시스템 개발 (Development of the Automated Calculation System for Air-Bearing Spindle)

  • ;정원지;;김대성;이춘만
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.38-48
    • /
    • 2004
  • Recently the use of high-speed equipment in machine-tool industry has greatly increased, which requires the development of prognostics and prediction methods on the design stage. Conversion of the test/experiments stage from real to virtual reality will not only significantly reduce the design and manufacturing cost, but will also increase design quality. This paper shows how it is possible to develop the automated system for the design calculations of the air-bearing spindles. First, the general calculation method is introduced. It contains several steps, namely, geometry identification, pressure calculation, stiffiness calculation, dynamics characteristics calculation. For geometry identification reducing spindle shaft to rings was proposed, which helps to automate the calculation process. For pressure calculation the Peshti method was implemented. For stiffiness calculation the analysis was made, which shown the necessity of correct calculation step selection. Then the system of ordinary differential equations containing influence coefficients was evolved, which is used for trjectories calculation. The graphical representation of the calculation results shows the dynamic behavior of the spindle unit concerning various working conditions. Finally, this automated system is illustrated by an example of the air-bearing spindle calculation.

급곡선용 레일탄성체결장치를 사용한 생력화궤도 시공 사례 (Construction Case of Maintenance-free Track System in Application of Elastic Rail Fastening System for Sharp Curved Section)

  • 공선용;김상진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.382-388
    • /
    • 2005
  • SMSC(Seoul Metropolitan Subway Corporation) is substantially taking the core role of mass transit system in Seoul Metropolitan area. When it was built, the design had challenged to sharp curved tracks less than 250m radius considering the protection of buildings and cultural properties as well as the connection to ground roads. Such circumstances have required a certain extent of slack in track geometry and therefore led to the construction of ballasted track with wooden sleepers. However, the dynamic force from running on sharp curved track has caused the misalignment and abnormal failure of track geometry, and it has resulted in a frequent maintenance and repair works which require a lot of cost and manpower. In this paper, we present the construction case of maintenance-free track system by using of concrete sleeper and elastic rail fastening system to ensure the safety of both passengers and trains, and to contribute the effective maintenance for track facilities of SMSC.

  • PDF

웹 환경에서 동적기하 프로그램의 비교 연구

  • 김부윤;정재훈
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.383-410
    • /
    • 2004
  • DGS(dynamic Geometry System)와 WBI(Web Based Instruction)를 고찰해보고, 동적 기하 프로그램의 대표적인 프로그램인 GSP, Cabri, Cinderella를 이용하여 WBI를 제작해 보고 웹 환경 하에서 세 프로그램의 효율성을 비교 ${\cdot}$ 분석하였으며, 이들 세 프로그램의 장점을 정리하여 웹 환경에서 동적 기하 프로그램의 개선 방향을 제시하였다.

  • PDF

진화알고리즘을 이용한 인버터 스폿용접기의 가변전력 제어 (Variable Power Control of Inverter Spot Welding Machine using Evolution Algorithm)

  • 김재문;김이훈;민병권;원충연;김규식;최세완
    • 전력전자학회논문지
    • /
    • 제7권4호
    • /
    • pp.384-394
    • /
    • 2002
  • 본 논문은 기존의 정전력 제어 대신에 용접품질을 향상시키기 위해 새로운 제어기법을 제안하였다. 제안된 방식을 구현하기 위해 미분기하학 이론을 근거로 한 비선형 피드백 선형화 기법을 이용하여 스폿용접 시스템을 선형시스템으로 한 후 진화전략을 이용하여 PI제어기의 최적 이득을 얻는다. 진화전략은 제어파라미터 최적화 문제를 풀기 위한 방법으로 자연진화의 원리를 모방한 알고리즘이다. 시뮬레이션과 실험결과는 진화전략에 의한 가변전력 제어의 성능이 기존의 제어방법보다 훨씬 더 우수하다는 것을 보여준다.

풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상 (Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry)

  • 이상윤;노삼영
    • 한국공간구조학회논문집
    • /
    • 제16권3호
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.

디지털 오너먼트의 패턴생성기법 및 표현특성 연구 (A Study of Pattern Generation Technique & Expressive Characteristics of Digital Ornament)

  • 한혜신;김문덕
    • 한국실내디자인학회논문집
    • /
    • 제19권5호
    • /
    • pp.83-94
    • /
    • 2010
  • Conventionally, ornament has developed around linear thinking based on Euclidean geometry, and been explained as simple and lucid natural Euclidean geometrical phenomena. The modular arrangement with vertical, horizontal and diagonal grids has been an organizing principle of classical ornament, but in digital era ornament is found not to be explained only with the principle of traditional arrangement due to the seemingly irregular complex forms. In that sense, this study presents the concept of digital ornament and examined the backgrounds of ornament in digital age, that are complex system and non-Euclidean geometry. Accordingly, the present study takes an approach by dividing new formal types of ornament into algorithmic form, hybrid form and dynamic form to find out a principle of pattern organization. Lately, architects who actively use computer for their architectural designs take the algorithmic strategies in nature and create various and complex patterns by simple rules. The patterns are not the repetition of the same, but the production of singularities. In addition, hybrid form by morphing shows a topologically flexible evolutionary transformation, and is used to create in-between transitional shapes from the source to target. Finally, the patterns by the interaction between the system components which are corresponded to the embedded forces emerge from dynamic simulation of the natural environment. Rather than objects itself, focus is given to the process of generating forms, and the ornamental patterns as the revelation of such implicit order provide not just the formal beauty but also spatial pathways for lights and air, maximizing the effects of lights.

종동력을 받는 이중진자의 혼돈운동 연구 (Chaotic Behavior of a Double Pendulum Subjected to Follower Force)

  • 장안배;이재영
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF