• 제목/요약/키워드: dynamic fatigue

검색결과 614건 처리시간 0.028초

젊은 성인의 근 피로가 발생된 무릎관절 폄근에 냉 찜질과 온 찜질의 적용이 균형, 고유수용성감각 및 근력에 미치는 영향 (Effect of Ice and Hot packs on Balance, Proprioception and Muscle Strength in Young Adults with Knee Extensor Muscle Fatigue )

  • 하헌호;장희진;이동엽;홍지헌;유재호;김진섭;남연교;김성길
    • 대한물리의학회지
    • /
    • 제18권4호
    • /
    • pp.121-131
    • /
    • 2023
  • PURPOSE: The purpose of this study was to evaluate the effects of ice and hot packs on proprioception, balance, and muscle strength in knee extensor muscle fatigue. METHODS: A total of 31 male and female students in their twenties from a university in A, Chungnam, Korea, were selected as participants. Three experiments were conducted to assess static balance, dynamic balance, proprioception, and muscle strength before and after induction of muscle fatigue, and following intervention. RESULTS: In the case of stability typical (ST), a significant difference was observed in pillow with eye open (PO) when a Hot pack was applied (p < .05). The weight distribution index (WDI), showed significant differences in normal eye open (NO) and Normal eye closed (NC) tests when ice packs and hot packs were applied (p < .05). In the dynamic balance assessment using Y-balance, significant differences were observed in all values except for pre- and post-intervention in the medial and lateral directions (p < .05). The recovery of proprioceptive sensation showed a significant difference when ice packs were applied (p < .05). In muscle strength, significant differences were observed in all comparisons between measurement time points (p < .05). CONCLUSION: Rest was most effective for static balance, and cold and warm compresses were most effective in recovering dynamic balance. For proprioception, cold compresses were most effective. Muscle strength had a positive effect on recovery in all three intervention methods. These results show that cold and warm compresses can be useful in the recovery of various functions related to muscle fatigue.

선회용 유성 기어박스의 유성기어 베어링 설계 (Planet Bearing Design of Slewing Planetary Gearbox)

  • 박영준;이근호;송진섭;남용윤;박성하
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.316-323
    • /
    • 2012
  • In order to meet the service life of planetary gearbox, a planet bearing, well known as the component with the highest failure rate, is designed. To predict the bearing fatigue life, ISO standard(ISO/TS 16281) is used, and the design parameters of the bearing are optimized using a parametric method. The whole planetary gearbox model is developed using a commercial software to calculate loads acting on planet bearings accurately. The results state that the designed bearings are satisfied with the life of 15,000hours, and the bearings that consist of 22rollers of 58mm have 1.6times longer life and better load sharing relatively than 22rollers of 28.5mm. Also, the increase in preload of taper roller bearings on the output pinion shaft prolongs the life of planet bearings regardless of roller's length.

예압 변경을 통한 틸팅패드 저널베어링의 패드 Fluttering 방지에 관한 연구 (Study on the Prevention of Pad Fluttering with the Variation of Preload in a Tilting Pad Journal Bearing)

  • 박철현;김재실;하현천;양승헌
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.344-351
    • /
    • 2004
  • Tilling pad journal bearings have been widely used to support the rotors of the high rotating machinery such as steam and gas turbines owing to their inherent dynamic stability characteristics. However, serious bearing problems such as fatigue damage in the upper unloaded pad, the break of locking pins and the wear of pinholes etc. by pad fluttering are frequently taken place in the actual steam turbines. The purpose of this paper is to investigate the mechanism of pad fluttering and to suggest the useful design guideline(application of preload, m) for the purpose of preventing bearing problems by pad fluttering in a tilting pad journal bearing. It is estimated that upper pad is easy to flutter because the film shape of the upper pad is diverged by moment acting on pivot point. This paper suggests that effective preload range(m $\geq$ 0.5) in order to be statically loaded pad under all operating conditions. Also, design modified bearing is suggested for the adjustment in actual steam turbines. And bearing and rotor dynamic analysis are performed to identify bearing characteristics and to verify the reliability of rotor-bearing system.

세라믹 촉매 담체의 내구 설계 기준에 대한 실험 및 수치해석의 비교 (Comparison of Experimental and Numerical Analysis for Durability Design Criteria in Ceramic Catalyst Substrate)

  • 백석흠;조석수
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.58-66
    • /
    • 2010
  • This study examines thermal safety on three-way catalyst that dominates 70 % among whole exhaust gas purification device in 2003. Three-way catalyst durability in the Korea requires 5 years/80,000 km in 1988 but require 10 years/120,000 km after 2002. Three-way catalyst durability in the USA requires 7 years/120,000 km but require 10 years/160,000 km after 2004. Three-way catalyst maintains high temperature in interior domain but maintains low temperature on outside surface. Therefore this device shows tensile stress on outside surface. Temperature distribution of three-way catalyst was acquired by thermal flow analysis for predicted thermal flow parameter. Thermal stress analysis for three-way catalysis was performed based on this temperature distribution. Thermal safety of three-way catalyst was estimated by power law dynamic fatigue life estimation and strength reduction methods for thermal stress.

복합화력발전소 가스터빈 압축기 블레이드에 대한 손상원인 고찰 (Fracture Mechanism of Gas Turbine Compressor Blades in a Combined Cycle Power Plant)

  • 양경현;송오섭;조철환;윤완노;정남근
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1025-1032
    • /
    • 2010
  • Gas turbine compressor blades used in a combined cycle power plant are possibly damaged and fractured during their operation. There are two possible causes of the failure of compressor blades; one is a defect of material quality which can be detected through some microscopic inspections for the fracture section, the other is high cycle fatigue problem caused by vibration and can be diagnosed by carrying out dynamic characteristics analysis for the blades. In this paper, in order to determine the cause of the failure of compressor blades in a combined cycle power plant, examination of the fracture section and the propagation mechanism of the crack via stress analysis are performed. Dynamic characteristics analysis via FRF estimation is also performed to identify the cause of failure.

Failure Analysis and Countermeasures of SCM435 High-Tension Bolt of Three-Step Injection Mold

  • Yun, Seo-Hyun;Nam, Ki-Woo
    • 한국산업융합학회 논문집
    • /
    • 제23권4_1호
    • /
    • pp.531-539
    • /
    • 2020
  • When injection mold is repeatedly used for mass production, fatigue phenomenon due to cyclic stress may occur. The surface and interior of structure might be damaged due to cyclic stress or strain. The objective of this study was to analyze failure of SCM435 high-tension bolts connecting upper and lower parts of a three-stage injection molding machine. These bolts have to undergo an accurate heat treatment to prevent the formation of chromium carbide and the action of dynamic stresses. Bolts were fractured by cyclic bending stress in the observation of ratchet marks and beach marks. Damaged specimen showed an acicular microstructure. Impurity was observed. Chromium carbide was observed near the crack origin. Both shape parameters of the Vickers hardness were similar. However, the scale parameter of the damaged specimen was about 20% smaller than that of the as-received specimen. Much degradation occurred in the damaged specimen. Bolts should undergo an accurate heat treatment to prevent the formation of chromium carbide. They must prevent the action of dynamic stresses. Bolts need accurate tightening and accuracy of heat treatment and screws need compression residual stress due to peening.

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

비대칭무게중심 물체의 동적 들기 작업시 좌.우 허리 근육의 EMG 진폭차이와 피로를 줄이기 위한 자세 연구 (Strategical Postures for Relieving EMG Amplitude Discrepancy on Bilateral Low Back Muscles and Total Low Back Muscle Fatigue while Lifting Asymmetric Load Dynamically)

  • 김선욱;한승조
    • 산업경영시스템학회지
    • /
    • 제35권3호
    • /
    • pp.103-109
    • /
    • 2012
  • The purpose of this paper is to suggest the strategical lifting postures able to alleviate imbalanced EMG amplitude leading to an increase in low back muscle fatigue while lifting asymmetric load dynamically. Eleven male subjects are required to lift symmetrically an external load with 15.8kg and load center of gravity (LCG) deviated 10cm to the right from the floor to the waist height at the speed of about 25cm/sec. The EMG amplitudes on bilateral low back muscles (Longissimus, Iliocostalis, and Multifidus) are recorded during 2sec and analyzed. Independent variables are trunk postures (No bending vs. Bending to the LCG) and feet placements (Parallel vs. Right foot in front of the other vs. Right foot behind the other). Dependent variables are EMG amplitude average on six muscles and the EMG amplitude difference between right and left muscle group. Results indicate the phenomenon showing an amplitude increase in the left muscle group is equal to an decrease in the right one is observed in dynamic as well as static lifts, bending the trunk to the LCG increases amplitude discrepancy more than no trunk bending, and the amplitude discrepancy in one foot ipsilateral to LCG in front of the other foot is lowest among other foot postures. As bilateral EMG amplitude discrepancy increases total low back muscle fatigue, the strategical combination of no trunk bending and one foot close to LCG in front of the other is recommended for preventing elevated incidence of low back pain (LBP).

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

유한요소법을 이용한 파괴 역학적 방법의 신뢰성설계기술에 관한 연구 (A Study on Reliability Design of Fracture Mechanics Method Using FEM)

  • 백승엽;이봉구
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4398-4404
    • /
    • 2015
  • 스테인리스 강판은 동적기계구조물을 제작하기 위한 구조용 재료로 널리 사용된다. 또한 이들을 일체화 시키는 방법으로 가스용접을 많이 사용하게 되는데 가스용접에는 다양한 종류에 의해 구조물을 일체화 시킨다. 따라서 부재와 부재를 연결하는 용접부에 대한 응력분포 및 피로강도평가는 구조물의 건전성 및 수명을 연구하는데 매우 중요한 요소가 된다. 그래서 본 연구에서는 피로시험에 의해서 얻어지는 ${\Delta}P-N_f$ 관계를 유한요소해석법에 의해서 최대주응력으로 ${\Delta}{\sigma}-N_f$ 관계로 나타내어 피로설계기준을 정하였고, 이 결과를 이용해서 확률론적 통계해석기법을 적용해서 가속식을 추정하여 임의의 목표수명을 예측할 수 있는 신뢰성설계기술기법을 제시하고자 하였다.