• 제목/요약/키워드: dynamic fatigue

검색결과 611건 처리시간 0.023초

철도교량 단부 전환부 궤도시스템의 구조적 거동특성 및 장기 내구성능 분석 (Evaluation of the Structural Behavior Characteristics and Long Term Durability for Transition Track Systems in Railway Bridge Deck Ends)

  • 이광도;정인철;최정열;박용걸
    • 한국철도학회논문집
    • /
    • 제17권4호
    • /
    • pp.260-269
    • /
    • 2014
  • 본 논문의 목적은 철도교량 단부 전환부 궤도의 구조적 거동특성을 평가하는 것이다. 국내 고속철도 교량상 궤도표준단면을 이용하여 전환부 궤도구조를 설계 및 제작하여 피로시험 전, 후에 대한 전환부 궤도시스템의 중립축 및 동특성(고유진동수 및 감쇠비)의 변화를 비롯하여 피로균열 발생경향을 수치해석 결과와 비교, 검토하였다. 연구결과, 국내 고속철도 궤도설계기준을 준용하여 설계한 전환부 궤도시스템에 대한 동특성을 실험적으로 산정하였으며 국내 철도하중 및 충격효과를 고려한 피로하중에 대한 구조적 건전성을 실험 및 해석적으로 입증하였다.

콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구 (Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites)

  • Kim, M.S.;Lee, H.C.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF

트레드밀 운동 동안 인솔의 종류가 피로도에 미치는 영향 (Effect of the Fatigue to Insole Types During Treadmill Exercise)

  • 고은혜;최흥식;김택훈;노정석;이강성
    • 한국전문물리치료학회지
    • /
    • 제11권2호
    • /
    • pp.17-25
    • /
    • 2004
  • The purpose of this study was to assess the effect of applied insole types to lower extremities muscle fatigue during treadmill exercise. The control group and each different insole type group consisted of ten healthy male subjects. In the control group and each different insole type (soft type; 10 shore, semi-rigid type; 33 shore, rigid type; 50 shore) treadmill exercise was performed in twenty-five minutes. The electromyography (EMG) signals of four muscle (tibialis anterior, gastrocnemius medialis, rectus femoris, biceps femoris) were recording at sampling rate of 1024 Hz during treadmill exercise. The localized muscle fatigue (LMF) can be investigated using power spectral analysis. When did data analysis that excepted initial five minutes. The raw EMG signals was processed using the fast Fourier Transformation (FFT) and the median power frequency value was determined in initial ten second period and in last ten second period. Fatigue index was calculated and collected data were statistically analyzed by SPSS version 10.0 two-way using analysis of variance (ANOVA) with repeated measures ($4{\times}4$) was used to determine the main effect and interaction. Post hoc was performed with least significant difference. A level of significance was .05. Muscles fatigue index were significantly decreased in insole types (p<.05) and not significantly different in muscle (p>.05). Post hoc analysis shows that fatigue index in soft insole type, semi-rigid insole type and rigid insole type were lower than that control group (p=.028, p=.146, p=.095). There were no interaction between insole type and muscles (p>.05). The finding of this study can be used as a fundamental data when insole is applied and insole can be used to decreased of a fatigue during the dynamic exercise.

  • PDF

자동차용 방진고무의 찢김시험 및 찢김에너지 정식화 (Tearing Test for Automotive Vibroisolating Rubber and Formulation of Tearing Energy)

  • 문형일;김헌영;김민건;김호
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1669-1674
    • /
    • 2012
  • 일반적인 고무 부품의 해석적 피로 수명 예측은 다양한 피로시험 결과를 바탕으로 정의되는 피로 수명식이 사용된다. 그러나, 이와 같은 방식은 피로 시험에 사용되는 비용적, 시간적인 문제로 인해 설계과정에서 매우 제한적으로 사용된다. 더욱이, 고무재료의 비규격화 및 임의적인 특성변화가 피로시험 결과의 데이터베이스화를 어렵게 만든다. 본 논문에서는 찢김에너지를 이용한 또다른 피로수명 예측 방식을 제안하였다. 자동차용 방진고무들에 대한 동적, 정적 찢김시험 및 복잡한 형상을 갖는 고무 부품의 찢김에너지를 계산하기 위하여 가상 결함을 고려한 유한요소 정식화를 수행하였다. 제안된 방법을 사용하여, 자동차용 모터 마운트의 피로 수명을 예측해 보았고, 실제 수명과 예측된 수명을 비교하여 신뢰성을 검증해 보았다.

Comparison of cyclic fatigue life of nickel-titanium files: an examination using high-speed camera

  • Ozyurek, Taha;Keskin, Neslihan Busra;Furuncuoglu, Fatma;Inan, Ugur
    • Restorative Dentistry and Endodontics
    • /
    • 제42권3호
    • /
    • pp.224-231
    • /
    • 2017
  • Objectives: To determine the actual revolutions per minute (rpm) values and compare the cyclic fatigue life of Reciproc (RPC, VDW GmbH), WaveOne (WO, Dentsply Maillefer), and TF Adaptive (TFA, Axis/SybronEndo) nickel-titanium (NiTi) file systems using high-speed camera. Materials and Methods: Twenty RPC R25 (25/0.08), 20 WO Primary (25/0.08), and 20 TFA ML 1 (25/0.08) files were employed in the present study. The cyclic fatigue tests were performed using a dynamic cyclic fatigue testing device, which has an artificial stainless steel canal with a $60^{\circ}$ angle of curvature and a 5-mm radius of curvature. The files were divided into 3 groups (group 1, RPC R25 [RPC]; group 2, WO Primary [WO]; group 3, TF Adaptive ML 1 [TFA]). All the instruments were rotated until fracture during the cyclic fatigue test and slow-motion videos were captured using high-speed camera. The number of cycles to failure (NCF) was calculated. The data were analyzed statistically using one-way analysis of variance (ANOVA, p < 0.05). Results: The slow-motion videos were indicated that rpm values of the RPC, WO, and TFA groups were 180, 210, and 425, respectively. RPC ($3,464.45{\pm}487.58$) and WO ($3,257.63{\pm}556.39$) groups had significantly longer cyclic fatigue life compared with TFA ($1,634.46{\pm}300.03$) group (p < 0.05). There was no significant difference in the mean length of the fractured fragments. Conclusions: Within the limitation of the present study, RPC and WO NiTi files showed significantly longer cyclic fatigue life than TFA NiTi file.

A computer based simulation model for the fatigue damage assessment of deep water marine riser

  • Pallana, Chirag A.;Sharma, Rajiv
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.87-142
    • /
    • 2022
  • An analysis for the computation of Fatigue Damage Index (FDI) under the effects of the various combination of the ocean loads like random waves, current, platform motion and VIV (Vortex Induced Vibration) for a certain design water depth is a critically important part of the analysis and design of the marine riser platform integrated system. Herein, a 'Computer Simulation Model (CSM)' is developed to combine the advantages of the frequency domain and time domain. A case study considering a steel catenary riser operating in 1000 m water depth has been conducted with semi-submersible. The riser is subjected to extreme environmental conditions and static and dynamic response analyses are performed and the Response Amplitude Operators (RAOs) of the offshore platform are computed with the frequency domain solution. Later the frequency domain results are integrated with time domain analysis system for the dynamic analysis in time domain. After that an extensive post processing is done to compute the FDI of the marine riser. In the present paper importance is given to the nature of the current profile and the VIV. At the end we have reported the detail results of the FDI comparison with VIV and without VIV under the linear current velocity and the FDI comparison with linear and power law current velocity with and without VIV. We have also reported the design recommendations for the marine riser in the regions where the higher fatigue damage is observed and the proposed CSM is implemented in industrially used standard soft solution systems (i.e., OrcaFlex*TM and Ansys AQWA**TM), Ms-Excel***TM, and C++ programming language using its object oriented features.

탄소섬유 복합재료의 열사이클에 의한 물성치 변화에 관한 연구 (A study for multi thermal cycle effect on mechanical property change in carbon epoxy composite)

  • 최순권;박세만;박명균
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.43-48
    • /
    • 2000
  • Composite materials have been increasingly used in automotive and aircraft industries, naturally leading to active researches on the materials. The carbon-epoxy composite is selected to study its thermal characteristics. During multiple thermal cycles composed of repeated cooling and heating variations of elastic constants are investigated to understand thermal effects on the carbon-epoxy composite. In this investigation longitudinal resonance method and flexural resonance method was used to characterize. The values of $E_1$ show small amount of increases depending on number of cycles of the thermal fatigue processes whereas values of $G_13$ do not indicate noticeable changes. Also, in cases of $E_2$ and $G_23$ their values decrease to a certain extend in initial stages after applications of thermal fatigue processes. However, the number of cycles of the applied thermal fatigue processes does not seem to affect their values.

  • PDF

민감도 정보를 이용한 구조물의 내구보강 기법 (Technique to reinforce the structure using the sensitivity information)

  • 권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.474-478
    • /
    • 2008
  • In this paper, the technique to reinforce the structure using the sensitivity information is proposed. Design variables related to the geometry of structure at fatigue fracture points are determined and sensitivities of fatigue life at fracture points with respect to the variation of design variables are calculated. Then the vector composed of gaps between the target life and initial life cycles at fracture points is calculated. The linear algebraic equation to solve the variation of design variables is composed. From the equation, the design variables for reinforced structure are determined.

  • PDF

FRP 바닥판의 섬유직각 방향에 대한 피로해석 (Fatigue Analysis for Fiber Right Angle Direction of FRP Deck)

  • 김두환
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.81-86
    • /
    • 2014
  • Composite materials have high specific stiffness, specific strength than existing concrete or steel materials. It has superior dynamic properties when utilizing advantages of material such as Non-corrosive, light weight, non-conducting and it has superior mold ability which can make variable shapes. Thus, in the construction, for using composite materials as construction materials, the study carried out static strength of fiber right angle direction and fatigue performance of FRP deck member. The study is going to deduct S-N curve by analyzing the results comparatively and estimate long-term durability. From now on, the study is going to provide interpretation of FRP member and basic data of design basis, furthermore providing foundation technique of composite materials' application of structural frame is the goal of this study.

New formulation for vibration analysis of Timoshenko beam with double-sided cracks

  • Ayatollahi, M.R.;Hashemi, R.;Rokhi, H.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.475-490
    • /
    • 2010
  • It is the intention of this study to synthesize the effects of double-edge cracks on the dynamic characteristics of a beam. The stiffness matrix is first determined for a Timoshenko beam containing two same-line edge cracks. The presented model is then developed for elements with two parallel double-sided cracks, considering the interaction between the stress fields of adjacent cracks. Finally, a finite element code is implemented, to examine the influence of depth and location of double cracks, on the natural frequencies of the damaged system.