• Title/Summary/Keyword: dynamic eccentricity

Search Result 143, Processing Time 0.023 seconds

Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows (난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

Effect of the Acceleration and Deceleration on the Dynamic Characteristics of an Air Stage (에어 스테이지의 동적 특성에 미치는 가속도 및 감속도의 영향)

  • Park, Sang Joon;Lee, Jae Hyeok;Park, Sang-Shin;Kim, Gyu Ha
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • Air stages are usually applied to precision engineering in sectors such as the semiconductor industry owing to their excellent performance and extremely low friction. Since the productivity of a semiconductor depends on the acceleration and deceleration performance of the air stage, many attempts have been made to improve the speed of the stage. Even during sudden start or stop sequences, the stage should maintain an air film to avoid direct contact between pad and the rail. The purpose of this study is to quantitatively predict the dynamic behavior of the air stage when acceleration and deceleration occur. The air stage is composed of two parts; the stage and the guide-way. The stage transports objects to the guideway, which is supported by an externally pressurized gas bearing. In this study, we use COMSOL Multiphysics to calculate the pressure of the air film between the stage and the guide-way and solve the two-degree-of-freedom equations of motion of the stage. Based on the specified velocity conditions such as the acceleration time and the maximum velocity of stage, we calculate the eccentricity and tilting angle of the stage. The result shows that the stiffness and damping of the gas bearing have non-linear characteristics. Hence, we should consider the operating conditions in the design process of an air stage system because the dynamic behavior of the stage becomes unstable depending on the maximum velocity and the acceleration time.

Analysis of Linear and Nonlinear Relative Orbit Dynamics for Satellite Formation Flying (선형 및 비선형 상대궤도운동 모델들의 정확도 분석)

  • Park, Han-Earl;Park, Sang-Young;Lee, Sang-Jin;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.317-328
    • /
    • 2009
  • Relative dynamic models of satellites which describe the relative motion between two satellites is fundamental for research on the formation flying. The accuracy of various linearized or nonlinear models of relative motion is analyzed and compared. A 'Modeling Error Index (MEI)' is defined for evaluating the accuracy of models. The accuracy of the relative dynamic models in various orbit circumstance are obtained by calculating the modeling error with various eccentricities of the chief orbit and distances between the chief and the deputy. It is found that the modeling errors of the relative dynamic models have different values according to the eccentricity, J2 perturbation, and the distance between satellites. Since the evaluated accuracy of various models in this paper means the error of dynamic models of the formation flying, the results of this paper are very useful for choosing the appropriate relative model of the formation flying mission.

A Study on the Bending and Torsional Behaviors of Cable-Stayed Bridges under a Concentrated Moving Load (집중 이동하중을 받는 사장교의 휨 및 비틈 거동에 관한 연구)

  • Chang, Sung Pil;Yhim, Sung Soon;Chu, Seok Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.1-12
    • /
    • 1989
  • The nonlinearity of a cable-stayed bridge results from the large displacement of main girder due to a long span, the catenary action of cables and the flexural stiffness reduced by large axial forces. The dynamic behaviour of a cable-stayed bridge plays an important role in determining its safety. Especially, when the eccentrically moving load is applied to a cable-stayed bridge, the torsional vibration and vertical vibration are coupled and moreover the variation of cable tensions shows important dynamic characteristics. This dissertation presents a theoretical study and a finite element procedure for analysis of a cable-stayed bridge under a eccentrically moving load. Attention is focused on the dynamic behaviours such as dynamic increments of cable tensions and nodal displacements, with the variety of velocities and eccentricities of moving load. It is found that a moving load with eccentricity can have significant effects upon the responses; the torsion of bridge deck and the increments of cable tensions, according to the present results in this study.

  • PDF

A Study on the Load Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing (공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구)

  • 조성욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.156-161
    • /
    • 1999
  • new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under a13 bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number)0.01, we can not ignore the effect of slip for journal bearing.

  • PDF

Development of Fault-Simulated System for Induction Motors (유도전동기 고장모의 시뮬레이터 개발)

  • Hwang, Don-Ha;Lee, Ki-Chang;Kang, Dong-Sik;Kim, Byong-Kuk;Jo, Won-Young;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.182-184
    • /
    • 2006
  • A down-scaled simulator is developed to simulate typical faults in induction motor such as short-turn stator winding, broken rotor bar, dynamic and static air-gap eccentricity, bearing trouble, and mechanical unbalance. The simulator is used as an initial builder to develop design algorithm for real-time faults detecting system by processing an abnormal signal and characteristics in each fault.

  • PDF

Study on the Oil-free Turbocharger Supported by Air Foil Bearing (공기 포일 베어링으로 지지되는 무급유 터보 과급기 회전체 설계에 대한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.453-458
    • /
    • 2002
  • The feasibility study on supporting a turbocharger rotor on air foil bearing is investigated. Based on finite difference method and Newton-Raphson method, the static equilibrium position of a turbocharger rotor is predicted. And using finite difference method and perturbation method, dynamic characteristics of air foil bearings are calculated. Rotordynamic analysis is performed by finite element method, with collaboration of calculated stiffness and damping of foil bearing. The effect of compliance and clearance of bump foil bearing on the oil-free turbocharger is investigated in terms of rotordynamics. And the critical speeds, eccentricity ratio, vibration amplitude, and stability are considered. It is demonstrated that foil bearings offer a rlausible replacement for oil-lubricated bearings in turbocharger.

  • PDF

A Study on the Oil-free Turbocharger Supported by Air Foil Bearing (공기 포일 베어링으로 지지되는 무급유 터보 과급기 회전체 설계에 대한 연구)

  • Lee Yong-Bok;Kim Tae-Ho;Kim Chang-Ho;Sa Jong-Sung;Lee Nam-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.51-56
    • /
    • 2003
  • The feasibility study on the oil-free turbocharger supported by air foil bearings is investigated. Using the perturbation method, dynamic characteristics of air foil bearings are calculated based on the static equilibrium position of a turbocharger rotor is predicted. With collaboration of calculated stiffness and damping of foil bearing, rotordynamic analysis is performed using the finite element method. The effects of bump compliance and bearing clearance on rotordynamic characteristics of the oil-free turbocharger such as the critical speeds, eccentricity ratio, vibration amplitude and stability are investigated.

The Study on Development of Performance in Cryogenic Piston Pump (초저온 피스톤 펌프의 성능 향상에 관한 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.240-246
    • /
    • 2014
  • In order to develop a universal cryogenic piston pump of small size for increasing utilization of liquid hydrogen, dynamic compression performance of piston pump were evaluated and improvements were also discussed for piston rod and piston tip. The cryogenic piston pump has crosshead structure and inclined cup shape piston tip. As the results, it was found that i) insulation of heat flow from piston-rod part is required for stable operation ii) improving the self-clearance adjustment effect of piston tip and reducing piston eccentricity were desirable to promote pumping pressure and operating range.

A Study on the Designs of John Galliano (존 갈리아노(John Galliano)의 디자인 연구(硏究))

  • Park, Hye-Won
    • Journal of Fashion Business
    • /
    • v.3 no.2
    • /
    • pp.19-29
    • /
    • 1999
  • The purpose of this study is for consideration of John Galliano's fashion design works. Galliano, young British designer, became the chief designer of Givenchy in 1995 and of Christian Dior in 1996. Through fashion information from WWD, High Fashion, Mode et Mode, Collezioni, Vogue, Internet sites and video tapes from 1995 to 1999, his works were concerned for this study. The results are as followed; First, we can find dynamics in Galliano's works. The dynamic mood came from his study about historic costume. Second, new beauty from dismantling and reconstruction was expressed on his designs. Third, his experimental creativities were based on fashion business. Therefore Galliano's eccentricity signify the Maximalism against the Minimalism which dominated the end of 20th century. So we can find a clue to new millenium in fashion world in his designs.

  • PDF