• Title/Summary/Keyword: dynamic decision network

Search Result 128, Processing Time 0.032 seconds

A Hybrid RBF Network based on Fuzzy Dynamic Learning Rate Control (퍼지 동적 학습률 제어 기반 하이브리드 RBF 네트워크)

  • Kim, Kwang-Baek;Park, Choong-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.33-38
    • /
    • 2014
  • The FCM based hybrid RBF network is a heterogeneous learning network model that applies FCM algorithm between input and middle layer and applies Max_Min algorithm between middle layer and output. The Max-Min neural network uses winner nodes of the middle layer as input but shows inefficient learning in performance when the input vector consists of too many patterns. To overcome this problem, we propose a dynamic learning rate control based on fuzzy logic. The proposed method first classifies accurate/inaccurate class with respect to the difference between target value and output value with threshold and then fuzzy membership function and fuzzy decision logic is designed to control the learning rate dynamically. We apply this proposed RBF network to the character recognition problem and the efficacy of the proposed method is verified in the experiment.

Rule-Based Anomaly Detection Technique Using Roaming Honeypots for Wireless Sensor Networks

  • Gowri, Muthukrishnan;Paramasivan, Balasubramanian
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1145-1152
    • /
    • 2016
  • Because the nodes in a wireless sensor network (WSN) are mobile and the network is highly dynamic, monitoring every node at all times is impractical. As a result, an intruder can attack the network easily, thus impairing the system. Hence, detecting anomalies in the network is very essential for handling efficient and safe communication. To overcome these issues, in this paper, we propose a rule-based anomaly detection technique using roaming honeypots. Initially, the honeypots are deployed in such a way that all nodes in the network are covered by at least one honeypot. Honeypots check every new connection by letting the centralized administrator collect the information regarding the new connection by slowing down the communication with the new node. Certain predefined rules are applied on the new node to make a decision regarding the anomality of the node. When the timer value of each honeypot expires, other sensor nodes are appointed as honeypots. Owing to this honeypot rotation, the intruder will not be able to track a honeypot to impair the network. Simulation results show that this technique can efficiently handle the anomaly detection in a WSN.

Intelligent Intrusion Detection and Prevention System using Smart Multi-instance Multi-label Learning Protocol for Tactical Mobile Adhoc Networks

  • Roopa, M.;Raja, S. Selvakumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2895-2921
    • /
    • 2018
  • Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.

Dynamic behavior control of a collective autonomous mobile robots using artificial immune networks (인공면역네트워크에 의한 자율이동로봇군의 동적 행동 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.124-127
    • /
    • 1997
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is simulated and suppressed by other robot using communication. Finally much simulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy.

  • PDF

An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots (자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Capacity Expansion Modeling of Water-distribution Network using GIS, VE, and LCC (GIS와 VE, LCC 개념에 의한 동적 상수도관망 대안 결정)

  • Kim, Hyeng-Bok
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.21-25
    • /
    • 1999
  • Planning support systems(PSS) add more advanced spatial analysis functions than Geographic information systems(GIS) and intertemporal functions to the functions of spatial decision support systems(SDSS). This paper reports the continuing development of a PSS providing a framework that facilitates urban planners and civil engineers in conducting coherent deliberations about planning, design and operation & maintenance(O&M) of water-distribution networks for urban growth management. The PSS using dynamic optimization model, modeling-to-generate-alternatives, value engineering(VE) and life-cycle cost(LCC) can generate network alternatives in consideration of initial cost and O&H cost. Users can define alternatives by the direct manipulation of networks or by the manipulation of parameters in the models. The water-distribution network analysis model evaluates the performance of the user-defined alternatives. The PSS can be extended to include the functions of generating sewer network alternatives, combining water-distribution and sewer networks, eventually the function of planning, design and O&H of housing sites. Capacity expansion by the dynamic water-distribution network optimization model using MINLP includes three advantages over capacity expansion using optimal control theory(Kim and Hopkins 1996): 1) finds expansion alternatives including future capacity expansion times, sizes, locations, and pipe types of a water-distribution network provided, 2) has the capabilities to do the capacity expansion of each link spatially and intertemporally, and 3) requires less interaction between models. The modeling using MINLP is limited in addressing the relationship between cost, price, and demand, which the optimal control approach can consider. Strictly speaking, the construction and O&M costs of water-distribution networks influence the price charged for the served water, which in turn influence the. This limitation can be justified in rather small area because price per unit water in the area must be same as that of neighboring area, i.e., the price is determined administratively. Planners and engineers can put emphasis on capacity expansion without consideration of the relationship between cost, price, and demand.

  • PDF

Distributed Virtual Topology Adaptation Method to Support IP Traffic in WDM Mesh Networks (WDM Mesh 네트워크에서 IP 트래픽을 수용하기 위한 분산형 가상토폴로지 적응 기법)

  • Kim, Eal-Lae;Lee, Sung-Kuen;Lee, Yong-Won;Chang, Sun-Hyok;Lee, Myung-Moon;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.1-10
    • /
    • 2007
  • We propose a new approach to accommodate bidirectional asymmetric traffic demands as well as unexpected dynamic internet traffic variation in the WDM mesh network by using optical networking technologies. In the proposed scheme, an intermediate node determines the optical path based on the switching statistics of IP router of the node which characterizes the Internet traffic variation, which in effect provides a dynamic and distributed traffic control over the network. It is expected to reduce the efficiency deterioration of RWA(Routing and Wavelength Assignment) due to the real-time variation of Internet traffic so that expandability and flexibility of the network can be enhanced. In this paper, we describe a methodology for traffic behavior analysis at a node, and the decision policy of the establishment/release of optical path. In addition, we evaluate the performance of the proposed scheme through the computer simulations.

Retrospective Maximum Likelihood Decision Rule for Tag Cognizance in RFID Networks (RFID 망에서 Tag 인식을 위한 회고풍의 최대 우도 결정 규칙)

  • Kim, Joon-Mo;Park, Jin-Kyung;Ha, Jun;Seo, Hee-Won;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • We consider an RFID network configured as a star in which tags stationarily move into and out of the vicinity of the reader. To cognize the neighboring tags in the RFID network, we propose a scheme based on dynamic framed and slotted ALOHA which determines the number of slots belonging to a frame in a dynamic fashion. The tag cognizance scheme distinctively employs a rule for estimating the expected number of neighboring tags, identified as R-retrospective maximum likelihood rule, where the observations attained in the R previous frames are used in maximizing the likelihood of expected number of tags. Simulation result shows that a slight increase in depth of retrospect is able to significantly improve the cognizance performance.

Dynamic Slot Re-assignment Scheme for Network Merge in Swarming Drone Networks (군집 드론 네트워크에서 네트워크 결합을 위한 동적 슬롯 재할당 기법)

  • Lee, Jong-Kwan;Lee, Minwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2019
  • In this paper, we propose an efficient dynamic slot re-assignment scheme for swarming drone networks in which networks members merged and split frequently. The leader drone of each network recognizes the slot allocation information of neighbor networks by periodic information exchange among between the drones. Using the information, the leader drone makes a decision how to reallocate the slots between members in case of network merge. The non-competitive method in the proposed scheme can re-assign the slots without any slot collision and shows always superior performance than competitive scheme. The competitive method in the proposed scheme reduces the number of slots that should be re-assigned in case of network merge. The experimental performance analysis shows that the proposed scheme performs better or at least equal to the performance of the competitive scheme in a swarming drone network.

An Intelligent PID Controller based on Dynamic Bayesian Networks for Traffic Control of TCP (TCP의 트래픽 제어를 위한 동적 베이시안 네트워크 기반 지능형 PID 제어기)

  • Cho, Hyun-Choel;Lee, Young-Jin;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.286-295
    • /
    • 2007
  • This paper presents an intelligent PID control for stochastic systems with nonstationary nature. We optimally determine parameters of a PID controller through learning algorithm and propose an online PID control to compensate system errors possibly occurred in realtime implementations. A dynamic Bayesian network (DBN) model for system errors is additionally explored for making decision about whether an online control is carried out or not in practice. We apply our control approach to traffic control of Transmission Control Protocol (TCP) networks and demonstrate its superior performance comparing to a fixed PID from computer simulations.