• Title/Summary/Keyword: dynamic buffer

Search Result 243, Processing Time 0.022 seconds

A Study of Buffer Allocation in FMS based on Deadlock and Workload (Deadlock과 Workload에 따른 FMS의 버퍼 Capacity 결정에 관한 연구)

  • 김경섭;이정표
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.63-73
    • /
    • 2000
  • Due to the complexity of part flow and limited resources, FMS(Flexible Manufacturing System) develops blocking, starvation and deadlock problems, which reduce its performance. In order to minimize such problems buffers are imposed between workstations of the manufacturing lines. In this paper, we are concerned with finding the optimal buffer allocation with regard to maximizing system throughput in limited total buffer capacity situation of FMS. A dynamic programming algorithm to solve the buffer allocation problem is proposed. Computer simulation using Arena is experimented to show the validation of the proposed algorithm.

  • PDF

Threshold-based Filtering Buffer Management Scheme in a Shared Buffer Packet Switch

  • Yang, Jui-Pin;Liang, Ming-Cheng;Chu, Yuan-Sun
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • In this paper, an efficient threshold-based filtering (TF) buffer management scheme is proposed. The TF is capable of minimizing the overall loss performance and improving the fairness of buffer usage in a shared buffer packet switch. The TF consists of two mechanisms. One mechanism is to classify the output ports as sctive or inactive by comparing their queue lengths with a dedicated buffer allocation factor. The other mechanism is to filter the arrival packets of inactive output ports when the total queue length exceeds a threshold value. A theoretical queuing model of TF is formulated and resolved for the overall packet loss probability. Computer simulations are used to compare the overall loss performance of TF, dynamic threshold (DT), static threshold (ST) and pushout (PO). We find that TF scheme is more robust against dynamic traffic variations than DT and ST. Also, although the over-all loss performance between TF and PO are close to each other, the implementation of TF is much simpler than the PO.

A Study on the Bandwidth Assignment Scheme for Video Data Using Dynamic Parameters in the Wireless ATM Networks (무선 ATM망에서 동적 변수를 이용한 비디오 데이터의 대역폭 할당방식에 대한 연구)

  • Jang, Dong-Hyeok;Kim, Seung-Hwan;Lee, Sun-Sook;Kwon, Oh-Seok
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.73-78
    • /
    • 2002
  • In WATM networks, in order to perform dynamic slot allocation required slots of mobile terminals are estimated based on DP (Dynamic Parameter) reflecting characteristics of traffic. In VBR (Variable Bit Rate) traffic, slot allocation is done at MT considering both time-dependent characteristics and QoS (Quality of Service) requirements. In this paper, DPs-buffer state information and buffer state change-are transmitted through in-band signaling. BS (Base Station) performs dynamic slot allocation considering traffic characteristics of each MT (Mobile Terminal), in other words, buffer state information informs the potentiality of 'buffer full state'to BS if MT buffer is over the specific threshold value and buffer state change notifies change in buffer state of incoming cells to MT. If buffer state information is equal to 'low (more than threshold)' and 'abrupt increase' it generates 'buffer full' state cell transmission delay or cell loss might occur. At this time BS should assign additional slots to MT, and then MT consumes cells in its buffer. In simulation, the proposed scheme shows better performance in cell delay and loss than EPSA (Estimation-Prorated Slot Assignment) in-band scheme.

Preventive Adaption Threshold Mechanism in Buffer Allocation for Shared Memory Buffer (공유 메모리 버퍼에서의 예방적 적응 한계치 버퍼 할당 기법)

  • Shin, Tae-Ho;Lee, Sung-Chang;Lee, Hyeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.10
    • /
    • pp.24-33
    • /
    • 2001
  • Delay, delay variation and packet loss rate are principal QoS(Quality of Service) elements of packet communication. This paper proposes a new buffer allocation mechanism to improve the packet loss performance in such a situation that multiple logical buffers share a single physical memory buffer. In the proposed buffer allocation mechanism, the movement of dynamic threshold follows a curved track instead of a straight line which is used in the DT(dynamic threshold) mechanism. In order evaluate the effectiveness of the proposed mechanism, it is compared with the existing previously proposed mechanisms in several aspects including NC(no control), ST(Static Threshold) and DT mechanisms.

  • PDF

An Efficient Load Balancing Technique in Cluster Based VOD Servers using the Dynamic Buffer Partitioning (동적 버퍼 분할을 이용한 클러스터 VOD 서버의 효율적 부하 분산 방법)

  • Kwon, Chun-Ja;Kim, Young-Jin;Choi, Hwang-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.9C no.5
    • /
    • pp.709-718
    • /
    • 2002
  • Cluster based VOD systems require elaborate load balancing and buffer management techniques in order to ensure real-time display for multiuser concurrently. In this paper, we propose a new load balancing technique based on the dynamic buffer partitioning in cluster based VOD servers. The proposed technique evenly distribute the user requests into each service node according to its available buffer capacity and disk access rate. In each node, the dynamic buffer partitioning technique dynamically partitions the buffer to minimize the average waiting time for the requests that access the same continuous media. The simulation results show that our proposed technique decreases the average waiting time by evenly distributing the user requests compared with the exiting techniques and then increases the throughput in each node. Particularly under the overloaded condition in the cluster server, the simulation probes that the performance of the proposed technique is better two times than the Generalized Interval Caching based technique.

DCAR: Dynamic Congestion Aware Routing Protocol in Mobile Ad Hoc Networks

  • Kim, Young-Duk;Lee, Sang-Heon;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To achieve load balancing in networks, many protocols have been proposed. However, existing load balancing schemes do not consider the remaining available buffer size of the interface queue, which still results in buffer overflows by congestion in a certain node which has the least available buffer size in the route. To solve this problem, we propose a load balancing protocol called Dynamic Congestion Aware Routing Protocol (DCAR) which monitors the remaining buffer length of all nodes in routes and excludes a certain congested node during the route discovery procedure. We also propose two buffer threshold values to select an optimal route selection metric between the traffic load and the minimum hop count. Through simulation study, we compare DCAR with other on demand routing protocols and show that the proposed protocol is more efficient when a network is heavily loaded.

  • PDF

A Dynamic Service Binding Framework for Embedded Devices (임베디드 장치를 위한 동적 서비스 연결 프레임워크)

  • Yeom, Gwy-Duk;Lee, Jeong-Geum
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.117-124
    • /
    • 2007
  • In this paper we present a translation lookaside buffer (TLB) system with low power consumption for embedded processors. The proposed TLB is constructed as multiple banks, each with an associated block buffer and a corresponding comparator. Either the block buffer or the main bank is selectively accessed on the basis of two bits in the block buffer (tag buffer). Dynamic power savings are achieved by reducing the number of entries accessed in parallel, as a result of using the tag buffer as a filtering mechanism. The performance overhead of the proposed TLB is negligible compared with other hierarchical TLB structures. For example, the two-cycle overhead of the proposed TLB is only about 1%, as compared with 5% overhead for a filter (micro) TLB and 14% overhead for a same structure without continuos accessing distinction algorithm. We show that the average hit ratios of the block buffers and the main banks of the proposed TLB are 95% and 5% respectively. Dynamic power is reduced by about 95% with respect to with a fully associative TLB, 90% with respect to a filter TLB, and 40% relative to a same structure without continuos accessing distinction algorithm.

A Frame Skipping Transfer Policy for Server based on Clients Dynamic Buffer Control Signal (클라이언트의 동적 버퍼 제어 신호에 의한 서버의 프레임 생략 전송 정책)

  • Jeong, Hong-Seup;Park, Kyoo-Seok
    • The KIPS Transactions:PartA
    • /
    • v.10A no.6
    • /
    • pp.677-684
    • /
    • 2003
  • Most policies of VOD services are mainly studied about server system, and make no touch on clients buffer stabilization which is the basis of guaranteeing playback quality and playing without cut off. In this paper, we proposed a skipping frame transfer policy that can sending dynamic buffer control signal to server in accordance with clients buffer state of starvation or overrun, and server transfers a skipped frame to client after receive the control signal. And through a simulation, we show the suggested policy is more efficiency on playback quality by buffer stabilization which is by preventing loss and miss for receiving frame due to grow worse client buffer state.

Buffer Management Scheme for Interactive Video Streaming (실감교류를 위한 비디오 재생 버퍼 관리 방안)

  • Na, Kwang-Min;Lee, Tae-Young;Kim, Heon-Hui;Park, Kwang-Hyun;Choi, Yong-Hoon
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.327-335
    • /
    • 2016
  • In this paper, we propose a buffer management scheme suitable for interactive multimedia services. We consider a typical delay optimization environment so that receiver buffer lengths vary according to the round trip time estimation. In this environment, we propose an optimization technique for minimizing the loss of information that may occur when a reduced buffer length forces I/P/B frames in the buffer to drop. We modeled our problem as a Knapsack Problem for which we used dynamic programing in order to find an approximate solution. The proposed technique is compared with the existing buffer management techniques. Through simulation studies, we found that our approach could increase PSNR, which is important to video quality.

A Dynamic Buffer Allocation Scheme in Video-on-Demand System (주문형 비디오 시스템에서의 동적 버퍼 할당 기법)

  • Lee, Sang-Ho;Moon, Yang-Sae;Whang, Kyu-Young;Cho, Wan-Sup
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.442-460
    • /
    • 2001
  • In video-on-demand(VOD) systems it is important to minimize initial latency and memory requirements. The minimization of initial latency enables the system to provide services with short response time, and the minimization of memory requirements enables the system to service more concurrent user requests with the same amount of memory. In VOD systems, since initial latency and memory requirement increase according to the increment of buffer size allocated to user requests, the buffer size allocated to user requests must be minimized. The existing static buffer allocation scheme, however, determines the buffer size based on the assumption that thy system is in fully loaded state. Thus, when the system is in partially loaded state, the scheme allocates user requests unnecessarily large buffers. This paper proposes a dynamics buffer allocation scheme that allocates user requests the minimum buffer size in fully loaded state as well as a partially loaded state. This scheme dynamically determines the buffer size based on the number of user requests in service and the number of user requests arriving while servicing current requests. In addition, through analyses and simulations, this paper validates that the dynamics buffer allocation outperforms the statics buffer allocation in initial latency and the number of concurrent user requests that can be supported. Our simulation results show that, in proportion to the static buffer allocation scheme, the dynamic buffer allocation scheme reduces the average initial latency by 29%~65%, and in a systems having several disks. increases the average number of concurrent user requests by 48%~68%. Our results show that the dynamic buffer allocation scheme significantly improves the performance and reduce the capacity requirements of VOD systems.

  • PDF