• Title/Summary/Keyword: dynamic block transportation environment

Search Result 2, Processing Time 0.015 seconds

Transporter Scheduling Based on a Network Flow Model for Dynamic Block Transportation Environment (동적 블록수송환경을 위한 네트워크 흐름모형 기반의 트랜스포터 일정계획)

  • Lee, Woon-Seek;Lim, Won-Il;Koo, Pyung-Hoi
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition, cancellation or change of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times: 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose a heuristic algorithm based on a network flow model which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Also, a rolling-horizon scheduling method is proposed for dynamic block transportation environment. The performance of the proposed heuristic algorithms are evaluated through a simulation experiment.

Transporter Scheduling for Dynamic Block Transportation Environment (동적 블록수송환경을 위한 트랜스포터 일정계획)

  • Lee, Woon-Seek;Lim, Won-Il;Koo, Pyung-Hoi;Joo, Cheol-Min
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.274-282
    • /
    • 2008
  • This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition or cancellation of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times : 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose heuristic algorithms which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Four heuristic algorithms for transporter scheduling are proposed and their performance is evaluated.