• 제목/요약/키워드: dynamic behaviour

검색결과 530건 처리시간 0.031초

Dynamic behaviour of semi-rigid jointed cold-formed steel hollow frames

  • Joanna, P.S.;Samuel Knight, G.M.;Rajaraman, A.
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.513-529
    • /
    • 2006
  • This paper deals with the dynamic behaviour of cold-formed steel hollow frames with different connection stiffnesses. An analytical model of a semi-rigid frame was developed to study the influence of connection stiffnesses on the fundamental frequency and dynamic response of the frames. The flexibilities of the connections are modeled by rotational springs. Neglect of semi-rigidity leads to an artificial stiffening of frames resulting in shorter fundamental period, which in turn results in a significant error in the evaluation of dynamic loads. In the seismic design of structures, of all the principal modes, the fundamental mode of translational vibration is the most critical. Hence, experiments were conducted to study the influence of the connection stiffnesses on the fundamental mode of translational vibration of the steel hollow frames. From the experimental study it was found that the fundamental frequency of the frames lie in the semi-rigid region. From the theoretical investigation it was found that the flexibly connected frames subjected to lateral loads exhibit larger deflection as compared to rigidly connected frames.

동적 시간지원 특성을 지원하는 망관리 객체의 정형적 모델링 (A Formal Modeling of Managed Object Behaviour with Dynamic Temporal Properties)

  • 최은복;이형효;노봉남
    • 한국정보처리학회논문지
    • /
    • 제7권1호
    • /
    • pp.166-180
    • /
    • 2000
  • ITU-T, ISO 등에 의해 제정된 표준권고안은 통신망 구성요소들간의 단순한 통신규칙을 정의하는 것 외에 통신망 관리에 필요한 자원들의 속성과 동적 특성에 대한 추상화된 표현, 그리고 통신망 구성요소들에 대한 관리기능을 포괄적으로 규정하고 있다. 그러나 표준통신망 구성요소중 관리객체에 동작에 영향을 미치는 능동적 요인들과 동작절차 및 그에 따른 통지 발생 등의 과정들이 ‘BEHAVIOUR" 템플릿내에 자연어를 이용하여 매우 포괄적이며 간략히 기술되어 있어, 관리객체의 동작 조건이나, 결과 등이 명확히 표현되지 못하는 문제점을 가지고 있다. 또한 관리객체의 동적 특성은 능동적 특성외에 시간지원 특성에 따라 동작 절차가 달라질 수 있다. 반복적이고 주기적인 정적인 시간 기념 뿐만 아니라 다른 관리자의 속성에 따라 사용권한이 결정되거나 특정기간 동안에만 권한이 부여되는 동적인 시간개념이 첨가된다면 관리객체의 능동적 특성이 더욱 강화될 수 있다. 본 논문에서는 정적인 시간관리객체의 활동을 제어하는 표준권고안의 스케줄링 관리객체에 동적인 특성을 추가하였으며 관리객체 기술의 표준인 GDMO 표현법에 의해 동적특성을 지원하는 스케줄링 관리객체를 기술하였다. 또한 관리객체의 동적 특성 기술을 위해 새롭게 정의한, 동적 시간지원 기능이 추가된 BDL을 이용하여 동작절차를 기술하였다. 그리고 동적 시간지원 특성을 지원하는 관리객체를 대리자 관리 기능 모델에 적용하여 체계적이고 정형적인 기술방법임을 제시한다.

  • PDF

케이블의 동적거동에 미치는 비선형 영향 (Nonlinear Effects on the Cable Dynamic Behaviour)

  • 신현경
    • 대한조선학회지
    • /
    • 제27권1호
    • /
    • pp.11-16
    • /
    • 1990
  • 거친 해상에서 케이블이 형성된 수 있는 큰 동장력(large dynamic tensile forces)과 기하학적 비선형성(geometric nonlinearity)의 고려는 비선형 케이블 운동방정식(nonlinear cable dynamics)의 해에 상당한 영향을 끼치며 이 결과의 응용은 케이블의 극단장력(extreme tensions)과 slack-and-snapping 케이블의 연구에서 필수적인 부분이 될 것이다. 비선형 유체항력만을 포함한 경우와 기하학적 비선형성과 큰 동장력항을 함께 포함하는 경우의 케이블 운동방정식의 해를 비교하여, 케이블의 동적 거동에 대한 기하학적 비선형과 큰 동장력항의 복합적인 영향을 연구한다. 큰 동장력항과 기하학적 비선형성의 고려는, 최대 동장력의 증가를 가져오나 반면에 최소 동장력의 크기에서의 감소를 가져옴으로, 결국 동장력의 평균값의 상승과 그로인한 케이블의 피로수명 단축을 유발할 수 있다.

  • PDF

Characteristic features of concrete behaviour: Implications for the development of an engineering finite-element tool

  • Kotsovos, Michael D.;Pavlovic, Milija N.;Cotsovos, Demetrios M.
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.243-260
    • /
    • 2008
  • The present article summarises the fundamental characteristics of concrete behaviour which underlie the formulation of an engineering finite element model capable of realistically predicting the behaviour of (plain or reinforced) concrete structural forms in a wide range of problems ranging from static to impact loading without the need of any kind of re-calibration. The already published evidence supporting the proposed formulation is complemented by four additional typical case studies presented herein; for each case, a comparative study is carried out between numerical predictions and the experimental data which reveals good agreement. Such evidence validates the material characteristics upon which the FE model's formulation is based and provides an alternative explanation regarding the behaviour of structural concrete and how it should be modelled which contradicts the presently (widely) accepted assumptions adopted in the majority of FE models used to predict the behaviour of concrete.

A numerical approach for simulating the behaviour of timber shear walls

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.383-407
    • /
    • 2012
  • A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

오일시일의 동적거동에 관한 실험적 연구 (Experimental Study on the Dynamic Behaviour of Oil Seals)

  • 김청균;심우전
    • Tribology and Lubricants
    • /
    • 제11권3호
    • /
    • pp.54-58
    • /
    • 1995
  • This paper deals with an experimental study on the dynamic behaviour of rubber oil seals when the interferences between the shaft and the seal lip as well as the dynamic eccentricities are present. The micro-separation of the sealing gap was observed with the aid of an image processing apparatus. The temperature of the seal lip edge, friction torque and the dynamic sealing gap profile are experimentally investigated for the initial interference and the shaft eccentricity. The data was simultaneously measured under the operation conditions. Experimental results show that, as the shaft speed is increased, the leakage of sealed fluids is increasing for a certain range of shaft speeds. The test data indicates that the shaft eccentricity clearly produces the gap separation between the shaft and the seal lip which is unable to follow the radial displacement of shaft as the shaft speed increases.

Dynamic behaviour of multi-stiffened plates

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.277-296
    • /
    • 2009
  • The paper investigates the dynamic behaviour of stiffened panels. The coupled differential equations for eccentric stiffening configuration are first derived. Then a semi-analytical procedure for dynamic analysis of stiffened panels is presented. Unlike finite element or finite strip methods, where the plate is discretized into a set of elements or strips, the plate in this procedure is treated as a single element. The potential energy of the structure is first expressed in terms generalized functions that describe the longitudinal and transverse displacement profiles. The resulting non-linear strain energy functions are then transformed into unconstrained optimization problem in which mathematical programming techniques are employed to determine the magnitude of the lowest natural frequency and the associated mode shape for pre-selected plate/stiffener geometric parameters. The described procedure is verified with other numerical methods for several stiffened panels. Results are then presented showing the variation of the natural frequency with plate/stiffener geometric parameters for various stiffening configurations.

석탄가스화공정의 동적모델링 (Dynamic Modeling for the Coal Gasification Process)

  • 유희종;김원배;윤용승
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1997년도 추계학술발표회 논문집
    • /
    • pp.47-53
    • /
    • 1997
  • Dynamic models have been developed for the coal gasification process by using a modular approach method. The complete unit is divided, for the convenience of the analysis, into several sections, viz. the coal feeding system, the gasifier, the gas cooler, the valves, the pumps, etc. The dynamic behaviour of each section is described in mathematical terms and each term is modulized into several submodels consisting of the complete process. To represent the behaviour of the fluid flow, the hydraulic network is proposed. Results for the more important system variables are presented and discussed. There dynamic models enable process and control engineers to quickly review a wide range of alternative operating and control strategies and help operators to easily understand the process dynamics and eventually can be applied to the design of commercial scale IGCC plants.

  • PDF

공작기계 구조물의 System Identification에 관한 연구

  • 하병한;노승훈;정성환;김교형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.323-328
    • /
    • 1992
  • The vibrations of the main spindles of the M/C tools is the most important in the con- sideration of the dynamic performance of the M/C tools. In order to analyze and predict the dynamic behaviour of the machine tool structure it is necessary to have the mathematical model of the system. The system identification is the procedure to provide us with the mathematical model of the system of which we want to know the dynamic characteristics. This study illustrates a procedure of the system identification of the structure of the M/C tools to predict the dynamic behaviour of the machine and further to have the basis for the design of M/C tools.