• 제목/요약/키워드: dynamic analysis in the time domain

검색결과 453건 처리시간 0.031초

진도-제주 HVDC 시스템의 동특성 해석 (Dynamic Characteristics Analysis of Jindo-Cheju HVDC System)

  • 김재한;김찬기;이성두;윤종수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2010
  • In case of connecting the weak AC system, a detailed attentions are needed. In particular, since HVDC system can control the flow of AC network freely, have to contain the range of stability and safe operation range. This paper deals with HVDC control algorithms, which are operated within 1 second on viewpoint of time domain, that is, transient stability. The target of HVDC introduced in this paper is Jindo-Cheju HVDC system, which will be operated at 2011. The introduced algorithm can be actually implemented to Jindo-Cheju HVDC system.

  • PDF

Dynamic analysis of water storage tank with rigid block at bottom

  • Adhikary, Ranjan;Mandal, Kalyan Kumar
    • Ocean Systems Engineering
    • /
    • 제8권1호
    • /
    • pp.57-77
    • /
    • 2018
  • The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.

Dynamic responses of an FPSO moored on sloped seabed under the action of environmental loads

  • Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.329-343
    • /
    • 2018
  • The inclination of seabed profile (sloped seabed) is one of the known topographic features which can be observed at different seabed level in the large offshore basin. A mooring system connected between the platform and global seabed is an integral part of the floating structure which tries to keep the floating platform settled in its own position against hostile sea environment. This paper deals with an investigation of the motion responses of an FPSO platform moored on the sloped seabed under the combined action of wave, wind and current loads. A three-dimensional panel discretization method has been used to model the floating body. To introduce the connection of multi-segmented non-linear elastic catenary mooring cables with the sloped seabed, a quasi-static composite catenary model is employed. The model and analysis have been completed by using hydrodynamic diffraction code AQWA. Validation of the numerical model has been successfully carried out with an experimental work published in the latest literature. The analysis procedure in this study has been followed time domain analysis. The study involves an objective oriented investigation on platform motions, in order to identify the effects of the slopped seabed, the action of the wave, wind and current loads and the presence of riser system. In the end, an effective analysis has been performed to identify a stable mooring model in demand of reducing structural responses of the FPSO.

Creation of a Voice Recognition-Based English Aided Learning Platform

  • Hui Xu
    • Journal of Information Processing Systems
    • /
    • 제20권4호
    • /
    • pp.491-500
    • /
    • 2024
  • In hopes of resolving the issue of poor quality of information input for teaching spoken English online, the study creates an English teaching assistance model based on a recognition algorithm named dynamic time warping (DTW) and relies on automated voice recognition technology. In hopes of improving the algorithm's efficiency, the study modifies the speech signal's time-domain properties during the pre-processing stage and enhances the algorithm's performance in terms of computational effort and storage space. Finally, a simulation experiment is employed to evaluate the model application's efficacy. The study's revised DTW model, which achieves recognition rates of above 95% for all phonetic symbols and tops the list for cloudy consonant recognition with rates of 98.5%, 98.8%, and 98.7% throughout the three tests, respectively, is demonstrated by the study's findings. The enhanced model for DTW voice recognition also presents higher efficiency and requires less time for training and testing. The DTW model's KS value, which is the highest among the models analyzed in the KS value analysis, is 0.63. Among the comparative models, the model also presents the lowest curve position for both test functions. This shows that the upgraded DTW model features superior voice recognition capabilities, which could significantly improve online English education and lead to better teaching outcomes.

MFCC-HMM-GMM을 이용한 근전도(EMG)신호 패턴인식의 성능 개선 (Performance Improvement of EMG-Pattern Recognition Using MFCC-HMM-GMM)

  • 최흥호;김정호;권장우
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.237-244
    • /
    • 2006
  • This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.

금속벨트 CVT의 전달함수 도출과 변속비 LQG/LTR 제어 (Transfer Function Derivation and LQG/LTR Speed Ratio Control for a Metal Belt CVT)

  • 김종준;송한림;김현수
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.49-58
    • /
    • 1997
  • In this paper, a transfer function was obtained for a PWM high speed solenoid valve controlled metal belt CVT system. The transfer function was defined as the ratio of speed ratio to PWM duty ratio and derived in time domain by linear regression analysis from the experimental results. The transfer function obtained showed different dynamic characteristics for the up and down shift. Also, LQG/LTR controller was designed for the CVT system using the transfer function. It is seen from the experimental results that LQG/LTR control showed good performance for the speed ratio tracking and disturbance rejection. The phase difference and relatively slow response are considered due to the inaccuracy os the transfer functions, which resulted from the inherent nonlinearities of the transmission characteristics of the metal belt CVT.

  • PDF

Sampled-Data Modeling and Dynamic Behavior Analysis of Peak Current-Mode Controlled Flyback Converter with Ramp Compensation

  • Zhou, Shuhan;Zhou, Guohua;Zeng, Shaohuan;Xu, Shungang;Cao, Taiqiang
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.190-200
    • /
    • 2019
  • The flyback converter, which can be regarded as a nonlinear time-varying system, has complex dynamics and nonlinear behaviors. These phenomena can affect the stability of the converter. To simplify the modeling process and retain the information of the output capacitor branch, a special sampled-data model of a peak current-mode (PCM) controlled flyback converter is established in this paper. Based on this, its dynamic behaviors are analyzed, which provides guidance for designing the circuit parameters of the converter. With the critical stability boundary equation derived by a Jacobian matrix, the stable operation range with a varied output capacitor, proportional coefficient of error the amplifier, input voltage, reference voltage and slope of the compensation ramp of a PCM controlled flyback converter are investigated in detail. Research results show that the duty ratio should be less than 0.5 for a PCM controlled flyback converter without ramp compensation to operate in a stable state. The stability regions in the parameter space between the output capacitor and the proportional coefficient of the error amplifier are enlarged by increasing the input voltage or by decreasing the reference voltage. Furthermore, the ramp compensation also can extend to the stable region. Finally, time-domain simulations and experimental results are presented to verify the theoretical analysis results.

非線形 케이블 有限要素에 관한 硏究 (A Study on a Nonlinear Cable Finite Element)

  • 장승필;박정일
    • 한국해안해양공학회지
    • /
    • 제1권1호
    • /
    • pp.93-101
    • /
    • 1989
  • 본 논문에서는 가이드 타워, 텐션 레그 프랫폼, 무어링 부이, 해저 케이블, 사장교, 현수교, 케이블 루프 등과 같은 해상 및 육상 구조물의 유한요소 모델에 사용하기 위한 기하학적 비선형 케이블 요소를 연구 제시하였으며, 케이블 요소는 평면내에서 임의의 하중과 기하형상을 갖는 케이블에 대한 탄성현수 케이블 이론으로부터의 적합방정식과 연성행렬을 직접 이용하여 유도하였다. 또한, 유도된 케이블 유한요소에 근거하여, 케이블 부재를 사용하는 구조물들의 유한요소 해석을 위해 전산 프로그램을 개발하였으며, 시간영역 동적 해석을 위해 뉴마크-베타의 직접적분법을 사용하였고, 각 시간간격에서의 비선형 평형방정식 및 적합방정식을 풀기 위한 방법으로서 뉴톤-랩슨의 반복법을 사용하였다. 이상과 같이 개발된 전산 프로그램을 이용하여 케이블 부재에 대한 정적 및 동적 해석을 수행한 후 그 결과를 분석ㆍ고찰하여 보았다.

  • PDF

지게차 충돌 위치 및 보관물류 분포에 따른 선반구조물의 거동특성분석 (Behavioral Characteristics Investigation of Rack Structure Depending on Forklift Impact Scenarios and Storage Distributions)

  • 옥승용;권오용;백신원
    • 한국안전학회지
    • /
    • 제28권6호
    • /
    • pp.49-56
    • /
    • 2013
  • The statistics of recent accidents in warehouses show that a heavy toll of lives were produced by various accidents, e.g. collision, overturn, fall, slip, exposure to harmful substances or environments, etc. Of significant concern amongst them is the collision, especially the collision between forklift and storage rack structure. Accordingly, this study focuses on behavioral characteristics of rack structure subjected to dynamic impact loading of a forklift. For this purpose, time-domain response analysis has been performed on a standard 2-bay six-story rack structure consisting of columns, beams and bracing members with perforated open section. In order to investigate the most critical scenario, the impact loads are applied in both down-aisle and cross-aisle directions, and the impact locations are also varied along the shelves of the palettes. In order to deal with storage distributions, three types of rack structures are further taken into account: original empty rack structure with no storage, half-loaded rack structure and fully-loaded rack structure. The numerical simulation results demonstrate that the dynamic characteristics of the rack structure are significantly dependent on the distribution of the storage goods and its natural period varies from 0.24sec to 1.06sec, approximately 4.4 times. Further, the parametric studies show that the forklift impact is most critical to the safety of the rack structure when it collides either at the base or at the top of the rack structure.

EMTDC를 이용한 UPFC Simulation (A UPFC Simulation using the EMTDC)

  • 송의호;전진홍;조동길;전영환;김학만
    • 전력전자학회논문지
    • /
    • 제6권3호
    • /
    • pp.291-298
    • /
    • 2001
  • 본 논문은 차세대 FACTS(flexible AC Transmission Systems)기술인 UPFC(Unified Power Flow Controller)의 시뮬레이션을 다룬다. UPFC의 해석과 모델을 통하여 전력조류제어를 시뮬레이션 한다. 전력시스템의 과도상태 및 제어에 대한 시간영역 시뮬레이션 프로그램인 EMTDC(Electro-Magnetic Transients in DC systems)를 사용하여 전력조류제어인 유효전력 및 무효전력제어를 수행하고 더불어 모선입력전압의 크기를 제어한다. 시뮬레이션 결과를 통하여 UPFC의 제어성능을 검증한다.

  • PDF