• 제목/요약/키워드: dynamic air condition

검색결과 175건 처리시간 0.027초

공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구 (A Study on the Load Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing)

  • 조성욱;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.156-161
    • /
    • 1999
  • new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under a13 bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number)0.01, we can not ignore the effect of slip for journal bearing.

  • PDF

선박 자세안정성 향상을 위한 Anti-heeling Pump용 100kW급 IPM 전동기의 편심에 의한 전자기 가진력 분석 (Analysis of Electromagnetic Vibration Sources in 100kW Interior Permanent Magnet Motor for Ship Anti-heeling Pump Considering Eccentricity)

  • 이선권;강규홍;허진
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2230-2235
    • /
    • 2011
  • The purpose of this paper is to provide the unbalanced magnetic force and vibration mode comparison between two large interior permanent magnet machines(IPM) with different pole-slot combination considering stator and rotor eccentricity. Due to the punching tolerance, the mixed eccentricity of air-gap is inevitable. It will generate the asymmetric magnetic flux density in air-gap, which makes the unbalanced magnetic pull and vibration. The study is focused on the unbalanced magnetic force and their harmonic components according to eccentricity conditions such as static, dynamic and mixed. When the high vibration is produced especially resonance, the obtained results provide clues what eccentricity condition occurs in the machine.

배기가스를 포함하는 수학적 엔진모델의 컴퓨터 해석 (Computer analysis of mathematical engine model including emissions)

  • 김유남;우광방
    • 오토저널
    • /
    • 제11권3호
    • /
    • pp.60-71
    • /
    • 1989
  • In this paper the structure of an engine and its interaction are investigated by a mathematical model for the performance evaluation. The total system is composed of air-fuel inlet element, intake manifold, combustion, engine dynamics and emission. Their control functions are schematically evaluated. Because of the model constructure with general engine functions and computer simulation of the chosen engine, physical characteristics of the corresponding engine and the engine data of normal operation states are used. According to the study, it is possible to predict the mixture rate by the difference in the mass of fuel and air flowing into cylinder and to evaluate and trace dynamic characteristic of operation state under various operating conditions. The model characteristic under the transient operating condition to evaluate operating of actual engine through the result of simulation.

  • PDF

Exergy Analysis of On/Off Controlled Heat Pump

  • Jang, Ki-Tae;Nam, Kwan-Woo;Jeong, Sang-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.22-32
    • /
    • 1999
  • A multi-type heat pump controls the mass flow rate of the working fluid to cope with variable heat loads when it is under dynamic load condition. This paper describes the exergy analysis associated with the unsteady response of a heat pump. First, a basic heat pump cycle is examined at a steady state to show the general trends of exergy variations in each process of the cycle. Entropy generation issue for the heat exchangers is discussed to optimize the heat pump cycle. Secondly, the performance of the inverter-driven heat pump is compared to that of the conventional one when the heat load is variable. Thirdly, the exergy destruction rate of the heat pump with On/Off operation is calculated by simulating the thermodynamic states of the working fluid in the condenser and the evaporator. The inefficiency of On/Off operation during the transient period is quantitatively described by the exergy analysis.

  • PDF

초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션 (Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;홍어진;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구 (A Study on the Lond Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing)

  • 조성욱;임윤철
    • Tribology and Lubricants
    • /
    • 제17권1호
    • /
    • pp.28-32
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under all bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number>0.01, we can not ignore the effect of slip for Journal bearing.

이온교환막 연료전지용 막 가습기의 운전 조건에 따른 성능 실험 (Performance Test of Proton Exchange Membrane Fuel Cell with the Variation of Operation Condition)

  • 배호준;김용모;이영덕;유상석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.6-9
    • /
    • 2008
  • The efficiency and life time of the proton exchange membrane (PEM) fuel cell system is critically changed with its humidity which should be maintained properly during dynamic operation. Membrane humidifier is required to regulate proper humidity level for the design point of the PEMFC system. In this study, we presented the performance of the cylindrical membrane humidifier which is operated as water-to-gas. Dry air pressure, liquid water flow temperature, and air flow rate were chosen as the operating parameters. Humidity level is expressed with dew point.

  • PDF

원자력 발전소에 사용되는 항온항습기의 안전관련 기기검증을 통한 최적 모델 개발 (Development of An Optimum Model Using Safety-Related Equipment Qualification for the Air Conditioner in the Nuclear Power Plant)

  • 서욱환;이영섭
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.1-5
    • /
    • 2006
  • The damage of important equipments for the nuclear power plant by the earthquake brings the loss of human lives and economic losses. Therefore safety-related equipment of nuclear power plant must be proved that function must be designed and structural integrity so that it can be maintained also from accident condition of various kinds. In this study, the computer room air conditioner to be delivered at the nuclear power plant applied to this qualification, try to develop an optimum model. This model ended up with good results which were under suitably allowable conditions about structurally safe earthquake.

석탄화력발전소 연소계통의 해석을 위한 모델개발 (Development of Analysis Model for Combustion System of Coal Fired Power Plant)

  • 정환주;박용섭;김성환;장영학;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.392-394
    • /
    • 2001
  • Coal power plants are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. This paper shows and discusses the developed analysis model, such as the forced draft fan the primary air fan, the furnace and burner system, air preheater and induced draft fan, etc. in accordance with BMCR condition of boiler using the Modular Modeling System(MMS) software.

  • PDF

원관내 맥동유동의 열전달에 관한 실험적 연구 (An Experimental Study on Heat Transfer in the Pulsating Pipe Flow)

  • 박희용;김창기
    • 설비공학논문집
    • /
    • 제3권1호
    • /
    • pp.78-85
    • /
    • 1991
  • An experimental result for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform wall heat flux. Experiments were performed at following conditions ; Inlet time-averaged Reynolds number varied from 5000 to 11000; The peak pressure fluctuation were 1.3, 2.3 and 3.5 percent of the mean pressure; Pulsating frequency ranged from 53 Hz to 320 Hz The measurements showed that the effect of pulsation on local heat transfer is greater at downstream, in which pulsating source exists, than upstream and the heat transfer rate, averaged over the pipe length, was higher or lower than in an equivalent non-pulsating flow according to the pulsating conditions. In addition, the significant change of heat transfer rate was observed in acoustically resonant conditions, when the pulsating frequency of the flow corresponded to the pipe natural frequency.

  • PDF