• Title/Summary/Keyword: dynamic RCS

Search Result 24, Processing Time 0.021 seconds

Dynamic MF-TDMA Framing Strategy For Improving Satellite Resource Efficiency (위성 자원 효율 증대를 위한 동적 MF-TDMA 프레이밍 기법)

  • Ko, Sang-Soon;Kim, Eun-Kyung;Lim, Jae-Sung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.445-446
    • /
    • 2012
  • 본 논문에서는 MF-TDMA(Multiple Frequency - Time Division Multiple Access) 방식을 이용하는 위성 시스템의 위성 자원 효율을 높이기 위한 동적 MF-TDMA 프레이밍 기법을 제안한다. DVB-RCS (Digital Video Broadcasting - Return Channel via Satellite)은 감우감쇠를 극복하기 위해 ACM (Adaptive Coding and Modulation) 기법을 사용한다. MF-TDMA에서는 하나의 채널이 동일한 ACM 모드를 지원하기 때문에 사용자의 채널 상태와 요청량을 고려하여 실제로 요구되는 ACM 모드를 지원하는 채널의 수를 계산한다. 모의실험을 통해 채널 상태 변화를 고려하지 않은 정적인 방식에 비해 제안하는 동적인 방식의 위성 자원 효율이 증가한 것을 확인할 수 있었다.

A Vehicle Recognition Method based on Radar and Camera Fusion in an Autonomous Driving Environment

  • Park, Mun-Yong;Lee, Suk-Ki;Shin, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo;Sarada Prasad Parida;Pankaj Charan Jena
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.529-540
    • /
    • 2023
  • A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.

Introduction of Vibration Evaluation for APR 1400 Reactor Coolant Pump Shaft (APR 1400급 원자로냉각재펌프의 회전체 진동평가에 관한 고찰)

  • Kim, Ik Joong;Lim, Do Hyun;Kim, Min Chul;Bang, Sang Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.110-115
    • /
    • 2014
  • The nuclear power plant was launched by Kori unit 1 in 1978 years. Currently, 23 nuclear power plants have been operating in Korea since 1978 years. The localization was completed for most of the reactor facility from Hanbit(Youngkwang) unit 3&4. However, RCP(Reactor Coolant Pump) and MMIS(Man Machine Interface System) is an important technology that has been excluded from the scope of the technical transfer has been dependent on a specific overseas vendor. Recent success in RCP development through co-operation with government and industries. Developed RCP will be applied to Shin-Hanul unit 1&2 nuclear power plants. The RCP operates in high speed and high pressure condition and only rotating component in the NSSS(Nuclear Steam Supply System). Therefore, the problem of vibration has arisen caused by the hydraulic forces of the working fluid. These forces can influence on the stability characteristics for entire RCS(Reactor Coolant System) loop, and can act as significant destabilizing forces. In this study, vibration evaluation of the pump shaft of development RCP estimated under normal operation and over speed conditions. In order to predict the vibration characteristics and dynamic behavior, modal analysis, critical speed analysis and unbalance response spectrum analysis were performed.

  • PDF