• Title/Summary/Keyword: dyeing assistants

Search Result 3, Processing Time 0.019 seconds

Dyeing of Fabrics with Immature Persimmon Juice - Effect of Dyeing Assistants and Ultraviolet Rays Treatment - (매염제와 자외선을 처리한 직물의 감즙염색)

  • 박덕자;박순자;고정삼
    • Korean Journal of Rural Living Science
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Dyeing and discoloration effects on the fabrics of cotton, silk and rayon with unriped persimmon juice were investigated. Color of dyed fabrics treated with persimmon juice only, added 3% tartaric acid or 3% aluminium sulfate was not different each other. Dyeing assistants such as tartaric acid or aluminium sulfate were effective on the prevention from discoloration of dyed fabrics and ultraviolet rays. Discoloration were supposed to derive from tannin in unriped persimmon, ultraviolet rays, oxygen, enzyme and so on, ultraviolet rays at wavelength of 253.7nm was the most active the chromatophores and discoloration. The fabrics could be dyed, when unriped persimmon juice was store at low temperature or freezing.

  • PDF

Foaming Efficiency of Anion Foaming Agent Solution to Add Dyeing Assistants (조제 첨가 음이온 발포제의 거품 효율)

  • 김공주;박병기;조은진;김지주;이재덕
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.82-90
    • /
    • 1992
  • To optimize the foam dyeing procedures for polyester and polyester/nylon blended non-woven fabrics, the effects of organic solvents and surfactants were investigated by measuring the foam heights and surface tensions of the foam dyeing solution. The results of the experiments can be summarized as follows: 1) Organic solvents and surfactants (sodium lauryl sulphate: SLS) solution lower the surface tension (ST) of the water, but ST lowering rate of SLS solution is greater than that of solvents. For a 0.25% SLS solution, the minimum surface tension was 30.3 dyne/cm, which is nearly the same value for organic solvents. 2) For 0.25% SLS solutions, additional adding of a 4.0% organic solvent makes the foam height (FH) be its maximum. 3) At 0.6 g/ι dye concentration, incorporation of 0.4% SLS makes the surface tension of the foam solution be its minimum. The foam height did not show any trend due to the dye type. 4) The effect of foam stabilizers (sodium alginate (Alg-Na) and hydroxy ethyl cellulose (HEC)) were also investigated. The foam height of the foaming solution with HEC was greater than that with Alg-Na. The foam stability of the foaming solution with Alg-Na was better than that with HEC.

  • PDF

Isothermal Vapor-Liquid Equilibria at 333.15 K and Excess Molar Volumes and Refractive Indices at 303.15 K for the Mixtures of Propyl vinyl ether + Ethanol + Benzene (Propyl vinyl ether+Ethanol+Benzene 혼합계의 333.15 K에서의 등온 기액평형과 303.15 K에서의 과잉물성 및 굴절율편차)

  • Hwang, In-Chan;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • Alkyl vinyl ethers such as methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether and isobutyl vinyl ether are usually used as industrial solvents and chemical intermediates in the chemical or pharmaceutical industry. Recently, they are popularly used as raw materials for polymer electrolyte membrane fuel cells and as cellulose dyeing assistants. However, very few investigations about process design and operation data were reported for alkyl vinyl ether compounds and there are no data for propyl vinyl ether(PVE) systems as far as we know. In this work, the isothermal VLE data are reported at 333.15 K for the ternary systems of {PVE + ethanol + benzene} by using headspace gas chromatography(HSGC) and these VLE data were correlated using Wilson, NRTL and UNIQUAC equations. The excess volumes($V^E$) and deviations in molar refractivity(${\Delta}R$) data are also reported for the sub binary systems {PVE + ethanol}, {ethanol + benzene} and {PVE + benzene} at 303.15 K. These data were correlated with Redlich-Kister equation. In addition, isoclines of $V^E$ and DR for ternary system {PVE + ethanol + benzene} were also calculated from Radojkovi equation.