• Title/Summary/Keyword: dye decolorization

Search Result 128, Processing Time 0.02 seconds

Decolorization in Dyebath by Dye Adsorption of Chitin -Effects on the Adsorption in Direct Dyebath- (키틴의 염료 흡착에 의한 염액의 색도제거에 관한 연구 -직접염료의 염액을 중심으로-)

  • 유혜자;김정희;이혜자;이전숙
    • Textile Coloration and Finishing
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2001
  • The adsorption ability of dyes on chitin, a natural polymer was investigated for decolorization of dye wastewater. Chitin was manufactured in lab by decalcification in dilute aqueous hydrochloric acid solution and deproteination in dilute aqueous sodium hydroxide solution with shrimp shells. Absorbance of residue solution of dyebaths after dye adsorptions of chtin were measured in varieties of dye concentration and dipping periods. Three kinds of Direct dyes -C.I. Direct Red 81 (red 81), C.I. Direct Brown l(brown 1) and C.I. Direct Green 26(green 26) - were used. Red 81 and brown 1 have smaller molecular weight than green 26. The results from experimentals were of]tamed as follows: 1) Adsorption of green 26 was improved in dyebath by addition of salt, but red 81 and brown 1 were not found any improvements. 2) Smaller size of chitin particles could be absorbed much more speedy. In this experiments, the smallest range of chitin particle size was $250\mu{m}$ and less. 3) The most efficient amount of chitin for 20m1 of dyebath was 0.2g, 4) Both of red 81 and brown 1 showed good and speedy adsorption abilities as dyestuffs of over 90 percent in just one minute in dyebath of 0.01% dye concentration. But green 26 was absorbed slowly because of its large molecular weight. It took 40minutes to absorb dyestuffs of over 90 percent in dyebath of 0.01% dye concentration.

  • PDF

Decolorizing Characteristics of Crystal Violet by Enterobacter cloace MG82. (Enterobacter cloacae MG82에 의한 Crystal Violet의 탈색특성)

  • 정민선;지원대;김병홍;정영건
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • Decolorizing characteristics of crystal violet by Enterobacter cloace MG82, which can decolorize rapidly triphenylmethane dyes, were investigated. The higher growth and decolorization activity was shown at big ratio of dissolved oxygen in the medium. The decolorization activity of crystal violet revealed highest at the middle of lag phase. As the concentration of crystal violet was higher, the growth of E. cloacae MG82 and decolorizing activity of crystal violet by this strain were worse. The maximum concentration of crystal violet at which E. cloacae MG82 be able to grow was 375 ${\mu}$M. E. cloacae MG82 was not able to use the crystal violet itself as a sole carbon source. So, it was shown that growth of E. cloacae MG82 and decolorization activity of crystal violet by this strain needed addition of another energy sources except this dye.

  • PDF

Characterization of Aerobic Decolorization of Remazol Black B by White Rot Fungi (Remazol Black B의 호기성 탈색을 위한 백색부후균의 분해 특성 분석)

  • 이재화;이은열
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.511-515
    • /
    • 2003
  • White rot fungi, Phanerochaete sp. EJ-31L, was evaluated for its ability to decolorize Remazol Black B, an azo dye that is a widespread pollutant in the wastewater of textile industry. It was observed that extent of decolorization by Phanerochaete sp. EJ-31L was dependent on the concentrations of co-carbon and nitrogen source. Effects of agitation and aeration were studied, and agitated culture at aeration condition resulted in greater extent of decolorization than static culture. Remazol Black B was readily decolorized up to 95% within 64 hr by Phanerochaete sp. EJ-31L.

Isolation of a Wood-rotting Fungus to Decolorize a Wide Range of Structurally Different Synthetic Dyes. (다양한 염료의 탈색이 가능한 목재부후균 분리)

    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.301-306
    • /
    • 2003
  • Twenty-one different fungi were tested for their ability to decolorize a wide range of structurally different dyes. Twenty fungal strains were isolated from fruiting bodies which were collected at the Kwangneung National Arboretum, Korea. One fungal strain were isolated from a rotting wood at Soongsil University, Korea. Nine kinds of dyes were used: three anthraquinone dyes and six azo dyes. The five fungal strains, Laetiporus sulphureus, Polyporus arcularius. Auricularia polytricha, Stereum ostrea, and Bjerkandera sp. UK-l showed decolorization ability. Except Auricularia polytricha, the four fungal strains were wood rotting fungi, and belonged to Aphyllophorales. Bjerkandera sp. UK-I, which was a white rot fungus, could decolorize all kinds of dyes tested in this study, indicating this fungus is one of candidates for applying in biological methods of dye waste treatment.

Isolation and Characterization of Klebsiella pneumoniae WL-5 Capable of Decolorizing Triphenylmethane and Azo Dyes (트리페닐메탄계와 아조계 색소를 탈색할 수 있는 Klebsiella pneumoniae WL-5의 분리 및 특성)

  • Wu, Jing;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1331-1335
    • /
    • 2008
  • A Klebsiella pneumoniae WL-5 with the capability of decolorizing several recalcitrant dyes was isolated from activated sludge of an effluent treatment plant of a textile and dyeing industry. This strain showed a higher dye decolorization under static condition and color removal was optimal at pH 6-8 and $30-35^{\circ}C$. More than 90% of its color of Congo Red were reduced within 12 hr at $200\;{\mu}M$ dye concentration. Malachite Green, Brilliant Green and Reactive Black-5 lost over 85% of their colors at $10\;{\mu}M$ dye concentration, but the percentage decolorization of Reactive Red-120, Reactive Orange-16, and Crystal Violet were about 46%, 25%, and 13%, respectively. Decolorizations of Congo Red and triphenylmethane dyes, such as Malachite Green, Brilliant Green, and Crystal Violet were mainly due to adsorption to cells, whereas azo dyes, such as Reactive Black-5, Reactive Red-120, and Reactive Orange-16 seemed to be removed by biodegradation through unknown enzymatic processes.

Electrocoagulation of Disperse Dyebath Wastewater: Optimization of Process Variables and Sludge Production

  • Aygun, Ahmet;Nas, Bilgehan;Sevimli, Mehmet Faik
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.82-91
    • /
    • 2021
  • This study was conducted to investigate the effect of initial pH, current density, and electrolysis time on process performance in terms of decolorization and chemical oxygen demand (COD) removal from disperse dyebath wastewater (DDW) by mono-polar parallel laboratory scale electrocoagulation (EC) process. COD reduction of 51.3% and decolorization of 92.8% were obtained with operating cost of 0.19 €/㎥ treated wastewater for Al-Al electrode pair, while 90.5% of decolorization and 49.2% of COD reduction were obtained with operating cost of 0.20 €/㎥ treated wastewater for an Fe-Fe electrode pair. The amount of sludge production were highly related to type of the electrode materials. At the optimum conditions, the amount of sludge produced were 0.18 kg/㎥ and 0.28 kg/㎥ for Al-Al and Fe-Fe electrode pairs, respectively. High decolorization can be explained by the hydrophobic nature of the disperse dye, while limited COD removal was observed due to the high dissolved organic matter of the DDW based on auxiliary chemicals. Energy, electrode, and chemical consumptions and sludge handling were considered as major cost items to find a cost-effective and sustainable solution for EC. The contribution of each cost items on operating cost were determined as 10.0%, 51.1%, 30.5% and 8.4% for Al-Al, and they were also determined as 9.0%, 38.0%, 40.5% and 12.5% for Fe-Fe, respectively. COD reduction and decolorization were fitted to first-order kinetic rule.

Isolation and Identification of Fungi for Decolorization of Synthetic Dyes

  • Lee, Jang-Hoon;Nam, Youn-Ku;Kwon, Hyuk-Ku
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.95-102
    • /
    • 2005
  • For decolorization of synthetic dyes, Isolate fungi were investigated for the decolorization of 8 industrial dyes. One fungus isolated from textile wastewater collected from Banweol industrial complex, Korea showed excellent ability for removing synthetic dyes. Internal Transcribed Spacers (ITS) sequencing result was confirmed as the new Basidomycetes species. HUE05-1 The optimal decolorizaton conditions were pH5, 30$^{\circ}C$ and aerobic condition. HUE05-1 was completely decolorized all dyes in both solid and liquid condition. The result is decolorization effect at Reactive Orange 16; 97.12%, Reactive Blue 19; 92.09%, Reactive Blue 49; 97.04%, Reactive Yellow 145; 95.53%, Acid Orange 10; 99.18%, Acid Violet 43; 98.73%, Acid Blue 350; 94.71%, Disperse Blue 106; 90.07%.

  • PDF

A Study on the Effects of Cosubstrates on the Biological Treatment and the Decolorization Mechanisms of Dyeing Wastewater (염색폐수의 생물학적 처리에 미치는 cosubstrates의 영향 및 색도제거 기전 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Ahn, Jae-Hwan;Shin, Eung-Bai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.738-745
    • /
    • 2006
  • In this research, the decolorization mechanisms of dye wastewater were divided into two pathways, one was physicochemical sorption to biomass flocs and the other was biological removal by microbial metabolisms. Batch tests were conducted to examine the reaction conditions, anaerobic and aerobic conditions, types and dose of cosubstrates, and to confirm the mechanisms of decolorization through the biosorption tests using the activated sludge and the autoclaved deactivated sludge. From the tests, the decolorization efficiencies of dye wastewater were 102 ${\Delta}$unit/g MLSS under the aerobic condition and 123 ${\Delta}$unit/g MLSS under the anaerobic condition, and organic removals were 82 $mg{\Delta}$COD/gMLSS and 75 $mg{\Delta}$COD/gMLSS respectively. Acetate was the more efficient cosubstrate than the domestic wastewater in the decolorization step. In addition the removal of colors and organics was increased with cosubstrates dosage. And $20.3{\sim}37.3$ ${\Delta}$unit/g MLSS was removed by the autoclaved sludge and $102.0{\sim}159.0$ ${\Delta}$unit/g MLSS by the activated sludge. The physicochemical sorption was dominant in the beginning of biosorption tests, and the biological decolorization was increased with a cosubstrate in the course of time.

Isolation and Optimization of Cultivating Conditions of Alkalophilic Strains for Biodegradation of Azo Dye (Azo 염료의 분해를 위한 호알카리성 균주의 분리 및 배양조건의 최적화)

  • Kim, Jeong-Mog;Chung, Hyun-Chae;Kwon, Oh-Jin
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.718-723
    • /
    • 1999
  • In order to treat of alkaline dye-processing wastewater, alkalophilic strains biodegrading azo dye, Acid red 1, is isolated from natural system, and optimal culture conditions are examined using response surface analysis, statistical analysis system program. 15 different species which grow in alkaline culture media are isolated from the effluent and river soil discharged from wastewater treatment plant in dye industrial complex. One strain which has the best decolorization efficiency is chosen, and named as AR-1. The result of the examination of carbon, nitrogen and phosphorus sources which have influence on growth and decolorization reveals that optimum carbon, nitrogen and phosphorus sources are 1.0% fructose, 1.0% polypeptone, 1.0% yeast extract and 0.5% $K_2HPO_4$, respectively. In order to optimize of biodegradation conditions of dye by response surface analysis, the characteristics of decolorization and cell growth according to culture temperature and time are monitered. The result shows that the one is optimum 34.77$^{\circ}C$ for 12.97 hours; the other at 34.73$^{\circ}C$ for 12.96 hours. While, optimal conditions of culture that satisfy both cell growth and decolorization are the temperatures from 32.86$^{\circ}C$ to 36.36$^{\circ}C$ and the period of 10.96 to 15.75 hours, respectively.

  • PDF