• Title/Summary/Keyword: dye decolorization

Search Result 128, Processing Time 0.029 seconds

A Study on the Optimization of Reflector for Reactor Using Solar $Light/TiO_2$ (태양광/$TiO_2$ 반응기용 반사판 최적화에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.373-380
    • /
    • 2006
  • The photocatalytic reactor using immobilized $TiO_2$ on silicone sealant was studied bench scale using solar light as the source of radiation. The influences of parameters such as shape, polishing extent and size of reflector, distance between reactor and reflector, an angle of inclination between reactor system and ground, were studies using Rhodamine B (RhB) as a model compound. respectively. The decolorization of round type among the reflector shapes was higher than that of the polygon and W type. The polishing extent of the reflector did not show the decolorization largely. The optimum size of reflector and distance between reactor and reflector were 38 cm and 6 cm, respectively.

Decolorization of Acid Orange II from Aqueous Solutions using Loess (황토를 이용한 Acid Orange II의 색도제거)

  • Park, Jae Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • Loess, a natural clay, was evaluated as an adsorbent for the decolorization of Acid Orange II, an azo and reactive dye, from aqueous solution. Adsorption studies were performed at $30^{\circ}C$ and the effect of reaction time, loess dosage, initial concentration, loess particle size, pH, agitation rate were investigated to determine the optimum operation conditions. The removal efficiencies of color were measured to evaluate the effectiveness of loess. From this study, it was found that optimal reaction time was 10 min. Color removal efficiencies of Acid Orange II were increased as higher loess dosage, initial concentration and agitation rate. However, color removal efficiencies decreased when pH is high and loess particle becomes large. Adsorption of Acid Orange II fitted to the pseudo-second-order rate kinetics more than first-order rate kinetics. Langmuir and Freundlich adsorption isotherm constants and correlation coefficients were calculated and compared. It was concluded that the adsorption data of Acid Orange II onto loess fitted to the Freundlich model more than Langmuir model.

Purification and Characterization of the Laccase Involved in Dye Decolorization by the White-Rot Fungus Marasmius scorodonius

  • Jeon, Sung-Jong;Lim, Su-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1120-1127
    • /
    • 2017
  • Marasmius scorodonius secretes an extracellular laccase in potato dextrose broth, and this enzyme was purified up to 206-fold using $(NH_4)_2SO_4$ precipitation and a Hi-trap Q Sepharose column. The molecular mass of the purified laccase was estimated to be ~67 kDa by SDS-PAGE. The UV/vis spectrum of the enzyme was nontypical for laccases, and metal content analysis revealed that the enzyme contains 1 mole of Fe and Zn and 2 moles of Cu per mole of protein. The optimal pH for the enzymatic activity was 3.4, 4.0, and 4.6 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonate) (ABTS), guaiacol, and 2,6-dimethoxy phenol as the substrate, respectively. The optimal temperature of the enzyme was $75^{\circ}C$ with ABTS as the substrate. The enzyme was stable in the presence of some metal ions such as $Ca^{2+}$, $Cu^{2+}$, $Ni^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Ba^{2+}$, $Co^{2+}$, and $Zn^{2+}$ at a low concentration (1 mM), whereas $Fe^{2+}$ completely inhibited the enzymatic activity. The enzymatic reaction was strongly inhibited by metal chelators and thiol compounds except for EDTA. This enzyme directly decolorized Congo red, Malachite green, Crystal violet, and Methylene green dyes at various decolorization rates of 63-90%. In the presence of 1-hydroxybenzotriazole as a redox mediator, the decolorization of Reactive orange 16 and Remazol brilliant blue R was also achieved.

Enterobacter sp. JE-1에 의한 Congo Red의 생분해

  • 공은진;김종수
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.473-480
    • /
    • 1998
  • The bacterial strain JE-1 degrading and utilizing Congo Red as a sole carbon source was isolated from dye-contaminated soul and Identified as Enterobacter species. Enterobacter sp. JE-1 had the highesc decolorization ability when It was cultured In the medium containing 0.05% $NH_4N0_3, 0.05% K_2HP0_4, 0. 03%$ $MgSO_4$, $7H_2O$, 0.025% Congo Red, initial pH 7.0 at $30^{\circ}C$, respectively Enterobacter sp. n-1 had the relatively high substrate specificity. The dye decolorizing activity was exclusively extracellular. The expected metabolic intermediates of Congo Red by Enterobacter sp.15-1 were analyzed by GC/MS. As a result. metabolic products like hauadecanoic acid, 1, 2, 3-triphenylcyclopropene, aliphatic hydrocarbons butylester were detected. Benzldine 616 not detected.

  • PDF

Color and COD Removal of Rhodamine B Using Ozone, Photocatalyst and Ozone-Complex Process (오존, 광촉매 및 오존-복합 공정을 이용한 Rhodamine B의 색도와 COD 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.662-669
    • /
    • 2007
  • The effect of advanced oxidation processes such as $O_3$, $UV/TiO_2$, $O_3/UV$ and $O_3/UV/TiO_2$ on decolorization and COD removal of Rhodamine B(RhB) wastewater were considered. The results showed that the higher the $O_3$ concentration was, the higher the decolorization observed and the optimum $TiO_2$ dosage was 0.4 g/L in $UV/TiO_2$ and $O_3/UV/TiO_2$ process. $O_3/UV$ process showed the higher initial decolorization rate constant and the shorter termination time for decolorization than those of the $O_3$ process. The decolorization rate constants in various systems followed the order of $O_3/UV/TiO_2>O_3/UV>O_3{\gg}UV/TiO_2$. The decolorization rate of the RhB solution in every processes was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. The COD removal rate constants in four systems followed the order of $O_3/UV/TiO_2>O_3/UV>UV/TiO_2{\geqq}O_3$. Among four processes, combined photocatalysis and ozonation$(O_3/UV/TiO_2)$ was the most prospective process for removing color and COD such as dye wastewater.

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

Comparison of Dye Removal Performance of Direct and Indirect Oxidation Electrode (직접 산화와 간접 산화용 전극의 Dye 제거 성능 비교)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.963-968
    • /
    • 2010
  • This study has carried out to evaluate the performance of direct and indirect oxidation electrode for the purpose of decolorization of Rhodamine B (RhB) in water. Four kinds of electrodes were used for comparison: Pt and JP202 (indirect oxidation electrode), Pb and boron doping diamond (BDD, direct oxidation electrode). The effect of applied current (0.5 ~ 2.5 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and electrolyte concentration (0.5 ~ 2.5 g/L), solution pH (3 ~ 11) and initial RhB concentration (25 ~ 125 mg/L) were evaluated. Experimental results showed that RhB removal efficiency were increased with increase of current, NaCl dosage and decrease of the pH. However, the effect of operating parameter on the RhB removal were different with the electrode type. JP202 electrode was the best electrode from the point of view of performance and energy consumption. The order of removed RhB concentration per energy lie in: JP202>Pt>Pb>BDD.