• Title/Summary/Keyword: dust sensor

Search Result 147, Processing Time 0.022 seconds

Environmental Equity Analysis of Fine Dust in Daegu Using MGWR and KT Sensor Data (다중 스케일 지리가중회귀 모형과 KT 측정기 자료를 활용한 대구시 미세먼지에 대한 환경적 형평성 분석)

  • Euna CHO;Byong-Woon JUN
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.218-236
    • /
    • 2023
  • This study attempted to analyze the environmental equity of fine dust(PM10) in Daegu using MGWR(Multi-scale Geographically Weighted Regression) and KT(Korea Telecom Corporation) sensor data. Existing national monitoring network data for measuring fine dust are collected at a small number of ground-based stations that are sparsely distributed in a large area. To complement these drawbacks, KT sensor data with a large number of IoT(Internet of Things) stations densely distributed were used in this study. The MGWR model was used to deal with spatial heterogeneity and multi-scale contextual effects in the spatial relationships between fine dust concentration and socioeconomic variables. Results indicate that there existed an environmental inequity by land value and foreigner ratio in the spatial distribution of fine dust in Daegu metropolitan city. Also, the MGWR model showed better the explanatory power than Ordinary Least Square(OLS) and Geographically Weighted Regression(GWR) models in explaining the spatial relationships between the concentration of fine dust and socioeconomic variables. This study demonstrated the potential of KT sensor data as a supplement to the existing national monitoring network data for measuring fine dust.

A Study on the Design and Implementation of Fine Dust Measurement LED Using Drone

  • Park, Jong-Youel;Ko, Chang-Bae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.48-54
    • /
    • 2020
  • Researchers recognized air pollution changes causing diseases and difficulties in living due to environmental pollution following various human activities, and have studied how to avoid fine dust harmful to the human respiratory system to be healthy. To this end, Arduino is used to equip fine dust level sensors in drones to measure the fine dust levels, visualize the measurements with LED indicator colors depending on the measurements to inform users of the danger of fine dust, and use the benefits of drones to specify dangerous fine dust zones and measure the fine dust levels. Users can see the changes depending on the fine dust levels in real time with the LED indicators. This will contributes to measuring fine dust levels easily in dangerous areas. Mission Planner (ArduPilot) is used to set up the GPS of drone, and store the data from the dust sensor as contents. This study aims to establish a method for improving the environment to measure fine dust levels with drones with LED indicators for fine dust, and reduce fine dust.

Development of Energy Saving System Using the Microwave Sensor (마이크로웨이브 센서를 이용한 에너지 절약시스템 개발)

  • Jung, Soon-Won;Lee, Jae-Jin;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.404-407
    • /
    • 2008
  • Because of directly receiving the thing in which a microwave is reflected and comparing the frequency, the microwave sensor with doppler effect completely overcomes the problem of the passive infrared sensor. The microwave sensor with doppler effect well operates about a temperature, the dust, and the peripheral noise because of being dull in the most of ambient conditions. The system developed in this research is the electricity saving detection sensor which it senses the real time action of a man as the microwave sensor and automatically turns on the electric lamp and turns off, minimizes the electrical energy consumption. Since the microwave sensor is not influenced in the light, the dust, and the natural element like the ambient temperature, the effectiveness is considered to be superior to the passive infrared sensor being used currently. There was the energy reduction effect more than about 60% in the performed example which established this system. When this was compared with the construction cost, the cost of establishing payback period was about 1-1.5 year. The microwave sensor with doppler effect developed from this research result is convinced in the future to do enough for the electric energy saving.

Visualization of the Comparison between Airborne Dust Concentration Data of Indoor Rooms on a Building Model (실내 공간별 미세먼지농도 비교 데이터의 시각화)

  • Lee, Sangik;Lee, Jin-Kook
    • Journal of the Korean housing association
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2015
  • The international concern on the inhalable fine dust is continuing to increase. In addition to the toxic properties of the fine dust itself, it can be more dangerous than other environmental factors since the dust pollution is hard to be detected by human sense. Although the information on outdoor air condition can be acquired easily, the indoor dust concentration is another problem because the indoor air condition is influenced by the architectural environment and human activity. It means occupants may be exposed to indoor dust pollution over a long period without being aware. Therefore the indoor dust concentration should be measured separately and visualized as an intuitive information. By visualizing, the indoor dust concentration in each space can be recognized practically in compare with the degree of pollution in adjacent spaces. Besides the visualization outcome can be used as base data for related research such as an analysis of the relation between indoor dust concentration and architectural environment. Meanwhile, with the development of network and micro sensing devices, it became possible to collect wide range of indoor environment data. In this regards, this paper suggests a system for visualization of indoor dust concentration and demonstrates it on an actual space.

Remote gas meter-reading system using magnetic sensor (자계 센서를 이용한 원격 가스 검침 시스템)

  • Koo, JaYl
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.90-94
    • /
    • 2002
  • This paper is related to remote meter-reading using magnetic sensor. Scan system which is developed recently has week point of temperature, humidity, dust, oscillation To solve these problems, this study used magnetic action to measure the consumption of gas. Gas consumption was detected by interaction of a permanent magnet and hall element. Permanent magnet was pasted on rolling change-gear in normal gas meter and hall sensor was pasted on the external wall of normal gas meter. This experiment proved high accuracy and wasn't influenced by temperature, humidity, oscillation and dust

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

Optical Characterization of Smart Dust Based on Photonic Crystals and Its Sensing Applications

  • Kim, Sung Gi
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2011
  • Various types of smart dust based on photonic crystal exhibiting unique reflectivity were successfully obtained by an electrochemical etching of silicon wafer using square wave currents. Smart dust containing Bragg structure obtained from the sonication of DBR porous silicon film in solution retained its optical reflectivity. Field emission scanning electron micrograph (FE-SEM) was used to measure the size of optically encoded smart dust and its size can be tuned from few hundred nanometers to few microns depending on the duration of sonication. Optical characteristics of smart dust were used to investigate a possible applications such as chemical sensors.

Design of Fine Dust Monitoring System based on the Internet of Things (사물인터넷 기반 미세먼지 모니터링 시스템 설계 및 구현)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.14-26
    • /
    • 2022
  • Recently, according to the severity of air pollution, interest in air pollution is increasing. The IoT based fine dust monitoring system proposed in this paper allows the measurement and monitoring of fine dust, volatile organic compounds, carbon dioxide, etc., which are the biggest causes affecting the human body among air environmental pollution. The proposed system consisted of a device that measures atmospheric environment information, a server system for storing and analyzing measured information, an integrated monitoring management system for administrators and smart phone applications for users to enable visualization analysis of atmospheric environment information in real time. In addition, the effectiveness of the proposed fine dust monitoring system based on the Internet of Things was verified by using the response speed of the system, the transmission speed of the sensor data, and the measurement error of the sensor. The fine dust monitoring system based on the Internet of Things proposed in this paper is expected to increase user convenience and efficiency of the system by visualizing the air pollution condition after measuring the air environment information with portable fine dust measuring device.

Assessment of the Environmental Conditions in Patient's Houses with Allergy by Use of a Fungal Index - A Case Study (곰팡이 센서(Fungal detector)를 이용한 알러지 환자 가정의 실내 환경 평가 - 사례연구)

  • Lee, Jun-Hyup;Kim, Young-Hwan;Moon, Kyong-Whan
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • The indoor environmental condition was assessed in houses with allergy (asthma and atopy) patients by use of a fungal detector. The fungal index was calculated from the growth rate of the sensor fungi in a fungal detector encapsulating the spores, Alternaria alternata S-78, Eurotium herbariorum J-183 and Aspergillus penicillioides K-712. Fungal indices were higher in asthma patient's houses than in control houses and Eurotium herbariorum showed the highest growth response among the sensor fungi. Dust mites allergen, Der f1, was also significantly high in allergy patient's houses where fungal indices above 10 were detected. A correlation was observed between the fungal indices and dust mite allergen proliferations in examined houses. Therefore, the fungal index can be a useful tool as an indirect indication for detecting chronic dampness that brings both contaminations by fungi and dust mite.

Intelligent Pattern Recognition Algorithms based on Dust, Vision and Activity Sensors for User Unusual Event Detection

  • Song, Jung-Eun;Jung, Ju-Ho;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.95-103
    • /
    • 2019
  • According to the Statistics Korea in 2017, the 10 leading causes of death contain a cardiac disorder disease, self-injury. In terms of these diseases, urgent assistance is highly required when people do not move for certain period of time. We propose an unusual event detection algorithm to identify abnormal user behaviors using dust, vision and activity sensors in their houses. Vision sensors can detect personalized activity behaviors within the CCTV range in the house in their lives. The pattern algorithm using the dust sensors classifies user movements or dust-generated daily behaviors in indoor areas. The accelerometer sensor in the smartphone is suitable to identify activity behaviors of the mobile users. We evaluated the proposed pattern algorithms and the fusion method in the scenarios.