• Title/Summary/Keyword: dust particle

Search Result 506, Processing Time 0.028 seconds

Measurements of the Lidar Ratio for Asian Dust and Pollution Aerosols with a Combined Raman and Back-scatter Lidar (라만-탄성 라이다를 이용한 황사 및 오염 에어러솔의 라이다 비 측정 연구)

  • Yoon, S.C.;Lee, Y.J.;Kim, S.W.;Kim, M.H.;Sugimoto, N.
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.483-494
    • /
    • 2010
  • The vertical profiles of the extinction coefficient, the backscatter coefficient, and the lidar ratio (i.e., extinction-to-backscattering ratio) for Asian dust and pollution aerosols are determined from Raman (inelastic) and elastic backscatter signals. The values of lidar ratios during two polluted days is found between 52 and 82 sr (July 22, 2009) and 40~60 sr (July 31, 2009) at 52 nm, with relatively low value of particle depolarization ratio (<5%) and high value of sun photometer-derived Angstrom exponent (> 1.2). However, lidar ratios between 25 and 40 sr are found during two Asian dust periods (October 20, 2009 and March 15, 2010), with 10~20% of particle depolarization ratio and the relatively low value of sun photometer-derived Angstrom exponent (< 0.39). The lidar ratio, particle depolarization ratio and color ratio are useful optical parameter to distinguish non-spherical coarse dust and spherical fine pollution aerosols. The comparison of aerosol extinction profiles determined from inelastic-backscatter signals by the Raman method and from elastic-backscatter signals by using the Fernald method with constant value of lidar ratio (50 sr) have shown that reliable aerosol extinction coefficients cannot be determined from elastic-backscatter signals alone, because the lidar ratio varies with aerosol types. A combined Raman and elastic backscatter lidar system can provide reliable information about the aerosol extinction profile and the aerosol lidar ratio.

Method to Evaluate Fabric Contamination Due to Fine Dust (섬유소재의 미세먼지 오염도 평가 방법 개발에 관한 연구)

  • Hwang, So-Young;Kwon, Jin-Kyung;Kim, Young-Sil;Choi, Eun-Jin;Kim, Da-Jin;Kim, Min;Yook, Se-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.86-91
    • /
    • 2021
  • Recently, functional clothes that can reduce deposition and/or penetration of fine dust have been developed. However, there are no methods to quantitatively evaluate the performance of these clothes. In this study, we developed a method to contaminate a fabric using fine dust and established an approach to quantitatively assess the degree of particle contamination on the fabric surface. Silicate powder was chosen as the particle to simulate fine dust because silicate particles are fluorescent under UV light; therefore, they can be distinguished from any color of non-fluorescent fabric surface. A camera with a high-resolution lens system was used to scan the surface of the contaminated fabric surface, and the degree of particle contamination of the fabric surface was analyzed in terms of the pixels corresponding to the area of the fabric surface contaminated by silicate particles. Finished or unfinished nylon fabrics as well as cotton fabrics were contaminated with silicate particles, and their surfaces were scanned using the established camera. The proposed assessment method was found to be useful for quantitatively comparing the degree of particle contamination of the fabrics.

Characteristics of Fine Particle Concentration and Case during Haze Days in Busan (부산 지역 연무 발생일의 미세먼지 농도와 사례별 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.751-765
    • /
    • 2017
  • This research investigates the characteristics of meteorological variation and fine particles ($PM_{10}$ and $PM_{2.5}$) for case related to the haze occurrence (Asian dust, long range transport, stationary) in Busan. Haze occurrence day was 559 days for 20 years (from 1996 to 2015), haze occurrence frequency was 82 days (14.7%) in March, followed by 67 days (12.0%) in February and 56 days (10.0%) in May. Asian dust occurred most frequently in spring and least in winter, whereas haze occurrence frequency was 31.5% in spring, 29.7% in winter, 21.1% in fall, and 17.7% in summer. $PM_{10}$ concentration was highest in the occurrence of Asian dust, followed by haze and haze + mist, whereas $PM_{2.5}$ concentration was highest in the occurrence of haze. These results indicate that understanding the relation between meteorological phenomena and fine particle concentration can provide insight into establishing a strategy to control urban air quality.

Comparison of Area vs Personal Total Dust Concentrations Measured by 37mm Closed-face Cassette and IPM Sampler (목재분진 농도 측정에 대한 37 mm closed-face 카세트법과 IPM 측정법 비교)

  • Lee, Dong-won;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.67-76
    • /
    • 1996
  • This study was performed to estimate total dust concentrations and particle size distribution of wood dust in the furniture and sawmill industries. To compare total wood dust concentrations, two samplers recommended by the American Conference of Governmental Industrial Hygienists and by the National Institute for Occupational Safety and Health were used. Concentration data were analyzed by paired-t tests using the SAS program and two parameters of the particle size distributions were determined by histogram. The results were as follows: 1. Particle size distributions showed a unimodal pattern in cutting and a bimodal in sanding operations. Mass median aerodynamic diameters(MMAD) were $17.35{\mu}m$ in cutting, and $1.39{\mu}m$ for small mode and $18.89{\mu}m$ for large mode in sanding operations. The proportions of particle size larger than $9.8{\mu}m$ estimated by the impactor were 61.16 % in cutting and 62.33 % in sanding operations, respectively. 2. The average personal total dust concentrations measured by IPM sampler were $17.12mg/m^3$ (GSD=1.45) from indoor samples, $2.97mg/m^3$(GSD=1.90) from outdoor samples in cutting, and $8.01mg/m^3$(GSD=1.58) from sanding operation. And those of by 37 mm closed-face cassette were $9.12mg/m^3$(GSD=1.46), $1.06mg/m^3$(GSD=1.99) from cutting, and $3.32mg/m^3$(GSD=2.16) from sanding operations. 3. The average area total dust concentrations measured by IPM sampler were $1.88mg/m^3$(GSD=2.04) from indoor cutting, $4.76mg/m^3$(GSD=2.83) from indoor sanding operations. And those of by 37mm closed-face cassette were $0.49mg/m^3$(GSD=2.34) from cutting, and $1.32mg/m^3$(GSD=3.03) from sanding operations. 4. The ratio of personal total dust concentrations measured by 37 mm closed-face cassette to those by IPM sampler were 35.7 %, 53.3 % from cutting, and 41.4 % from sanding operations. 5. The ratio of area total dust concentrations measured by 37 mm closed-face cassette to those by IPM sampler were 26.1 % from cutting, and 27.7 % from sanding operations. 6. A statistically significant difference of total dust concentrations between the 37 mm closed-face cassette and the IPM sampler was found.

  • PDF

A Study on the Mass Collection Efficiency in Collector Step of Electrostatic Precipitator by Physical Gas Characterization (전기집진장치에서 가스의 물리적인 특성에 따른 포집구역내의 입자포집율 연구)

  • Ha, Sang-An;Im, Gyeong-Taek;Sin, Nam-Cheol
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 1998
  • This study was carried out to investigate the collection Efficiency of mass in collector step at the different of physical gas characterization. This work has focused on the dependence of the collection efficiency of mass in the collector zone of a two-stage set up field with gas temperature T and the dew point tmeperature. To identify the dependence of the mass collection efficiency on the Bounded plate of the collector zone MP.k by the spectre electric resistance of dust $p_e$. and the relative humidify ${\varphi}$, 20 at- tempts have been made with three different gas temperature ($50{\circ}C, 80{\circ}C, 110{\circ}C$) at different dew point. At the specific electric resistance of dust $p_e$=$10^6{\Omega}m$ which relative humidity corresponds to $\phi$ > 15%, a easy rise of the sounded plate secluded dust mass share was measured atwain. As the result of the higher cohesion imprisonment power due to the adsorbtion of particle, the rinse of the relative humidity developed on the particle surface. Therefore, the collection efficiency of mass was not predominant the high temperature T in the collector zone, neither was the pecific ellectric resistance of dust dependent.

  • PDF

Collection Efficiency of a Mist Eliminator for Wet Flue Gas Desulfurization (습식 배연탈황설비용 습분제거기 포집효율 평가)

  • Kim, Moon-Won;Yook, Se-Jin;Yu, Tae U
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • Recently, there has been much research on the effect of ultrafine dust on human body with increasing interest in the ultrafine dust. In the Republic of Korea, there are many old thermal power plants, and the amount of ultrafine dust emitted from the thermal power plants is reported to be about 14% of the total amount of domestic fine dust. Therefore, the amount of fine dust from the flue gas desulfurization facility in the thermal power plant needs be reduced. In this study, we made an experimental setup to simulate a flue gas desulfurization facility and analyzed the physical characteristics of the particles passing through a mist eliminator. Experiments were carried out to investigate the collection efficiency of the mist eliminator by using the Arizona Test Dust in a dry environment, and then spraying limestone slurry into the flue gas desulfurization system equipped with the mist eliminator to examine the size and morphology of limestone particles upstream and downstream of the mist eliminator. Cut-off size of the mist eliminator was formed at about $6{\mu}m$. The result of this study is expected to be helpful for designing an electrostatic precipitator for removing particles passing through the mist eliminator.

A Study on the Recovery of Zn from Electric Arc Furnace Dust by Carbon Reduction

  • Joo, Sung-Min;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Kyung-Hoon;Sung, Ghee-Woong;Kim, Jang-Su;Lee, Park-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.398-403
    • /
    • 2001
  • There is a potential usability of electric arc furnace(EAF) dust produced during the iron manufacturing process as a recycled resource, because valuable materials such as Zn, Pb and Fe are contained in it. In this study, metallic Zn was recycled from the fine electric arc furnace dust by a solid state reduction method using carbon at relatively low temperature. It was possible to recover metallic zinc by using of high vapour pressure of zinc with this reduction method. The feasibility of recycled zinc for cold bonded pellet(CBP) was investigated. The main composition of EAF dust were franklinite(ZnFe$_2$O$_4$), magnetite(Fe$_3$O$_4$) and zincite(ZnO), and Pb and Cl were completely removed by a heat treatment in oxidation environment. The reduction ratio increased as the solid carbon content increased, and it increased with decreasing of dust particle size and increasing of compaction pressure due to a increase of contact area.

  • PDF

An advanced study of multi-stage type hydrocyclone dust collector for fish egg collecting using Visualization (가시화기법을 이용한 다단형 하이드로 사이클론 어란 (魚卵) 집진장치의 개선에 관한 연구)

  • CHOI, Eunhee;PYEON, Yongbeom;LEE, Seung-heon;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.404-412
    • /
    • 2017
  • A centrifugal cyclone dust collecting apparatus includes a hydro cyclone dust collecting apparatus for separating solid or liquid using liquid or suspension as a medium. In this study, the formation mechanism and improvement of air core and inner air layer were confirmed through Particle Image Velocimetry. These results showed that the modified experimental model was designed in the conventional method suitable for the separation of juvenile fish and eggs. The inlet speed of the multi-stage hydrocyclone dust collector, which can increase the inlet velocity and minimize floatage in the turbulence chamber, was increased from 0.15 to 0.30 m/s. As a result, the air core was stably formed, the inner air layer was increased with increasing speed. In addition, the dust collecting efficiency of egg and juvenile fish was 97.8% on average, It can infer that this system confirmed the ability to efficiently collect particles of $40{\mu}m$ or more.

A Numerical Study on Axial Inlet Cyclone for Diesel Engine (디젤 엔진용 싸이클론 내부 수치 해석)

  • Kim, S.K.;Son, C.S.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • On this study, numerical analysis was performed for the 3 dimensional flow field of gas and particle phase for axial inlet cyclone, a part of dust collector. We applied FVM to visualize the gas phase. The flow was solved using ${\kappa}-{\varepsilon}$ turbulence model. The major parameters considered in this study were helical guide vane, inner diameter, length. Particle trajectory calculations were performed for the particle sizes of $5{\mu}m{\sim}75{\mu}m$. The distribution curve of particle sizes was made of Rosin-Rammler function. The simulation results show various gas flows, particle trajectories on numerical models.

  • PDF

Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan (부산 도심지에서 측정된 에어로졸 농도의 물리적 특성)

  • Kim, Yun-Jong;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.