• Title/Summary/Keyword: dust cloud

Search Result 134, Processing Time 0.035 seconds

A Far-UV Study in Taurus-Auriga-Perseus(TPA) Complex

  • Lim, Tae-Ho;Min, Kyung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.80.2-80.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([152,180], [-28, 0]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It says strong absorption in the dense Taurus cloud and Auriga cloud. Although the column density of Perseus and California cloud is similar to Taurus' and Auriga's, Perseus and California cloud do not show strong absorption in FUV because they are more distant than Taurus and Auriga cloud. We also present the dust scattering simulation based on Monte Carlo Radiative Transfer technique. Through the result of Monte-Carlo dust scattering simulation and comparing the result with FIMS-GALEX unified map we gain deeper understanding related to the spatial dust distribution of TPA region. As a preliminary result of the simulation we present the most probable front face, thickness, albedo, and asymmetry factor in this region, respectively. Through this work we can show a certain inclination of the spatial dust distribution. During this study we have developed the FUV dust scattering simulation code using Monte-Carlo method. We expect that it will be generally used to simulate dust scattering in the Galaxy.

  • PDF

A Study on the Structure of the Dust Cloud Around ${\lambda}$-Orionis

  • Lee, Duk-Hang;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.60.2-60.2
    • /
    • 2014
  • The dust cloud around ${\lambda}$-Orionis is seen to be circular symmetric with the large angular extent (${\sim}8^{\circ}$). However, whether the three dimensional structure of the cloud is shell or torus ring is not yet fully resolved. We studied the structure of the dust cloud using a three-dimensional Monte-Carlo simulation code, MoCafe (Monte Carlo radiative transfer). The dust density structure of the cloud was inferred based on the star-count method. We assumed that the cloud is a spherical shell or a torus ring and calculated the radial profiles of scattered light originating from a central OB association. Comparison of the results with the S2/68 ultraviolet observations indicates that the cloud is a spherical shell. We also compared the Av map around ${\lambda}$-Orionis with the optical depth obtained based on the star-count.

  • PDF

A STUDY OF LYNDS 1299 DARK CLOUD

  • RYU OK-KYUNGI;LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.161-171
    • /
    • 1998
  • We have mapped about 1.5 square degree regions of Lynds 1299, a well isolated dark cloud in the Outer Galaxy (l = $122^{\circ}$, b = $-7^{\circ}$), in the J = 1- 0 transition of $^{12}CO$ and $^{13}CO$ with the 13.7 m radio telescope at Taeduk Radio Astronomy Observatory (TRAO). We found that there are two velocity components in the molecular emission, at $V_{LSR} = -52 km S^{-1}$ (Cloud A) and -8.8 km $s^{-1}$ (Cloud B), respectively. We have derived physical parameters of two molecular clouds and discussed three different mass estimate techniques. We found that there are large discrepancies between the virial and LTE mass estimates for both clouds. The large virial mass estimate reflects the fact that both are not gravitationally bound. We adopt the mass of $5.6 {\times}10^3 \;M{\bigodot}$ for Cloud A and $1.2{\times}10^3 \;M{\bigodot}$) for Cloud B using conversion factor. Cloud A is found to be associated with a localized star forming site, and its morphology is well matching with that of far-infrared (FIR) dust emission. It shows a clear ring structure with an obvious velocity gradient. We suggest that it may be a remnant cloud from a past episode of massive star formation. Cloud B is found to be unrelated to Cloud A (d = 800 pc) and has no specific velocity structure. The average dust color temperature of the uncontaminated portion of Cloud A is estimated to be 24$\~$27.4 K. The low dust temperature may imply that there is no additional internal heating source within the cloud. The heating of the cloud is probably dominated by the interstellar radiation field except the region directly associated with the new-born B5 star. Overall, the dust properties of Cloud A are similar to those of normal dark cloud even though it does have star forming activity.

  • PDF

A Study on The Spontaneous Ignition of a Hydroxy Propyl Methyl Cellulose Dust Cloud (Hydroxy Propyl Methyl Cellulose 분진의 운상자연발화에 관한 연구)

  • Lim, Woo-Sub;Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.137-140
    • /
    • 2004
  • The minimum ignition temperature at which the dust cloud can spontaneously ignite is considered to be very important in industries to prevent explosion occurring in hot surfaces. This paper has dealt with the experimental study of the determination of minimum ignition temperature of Hydroxy Propyl Methyl Cellulose (HPMC) dust cloud. We have used the Godbert-Greenwald Furnace Apparatus to determine the ignition temperature and limiting oxyten concentration for dust could. The experimental determinations on the minimum ignition temperature were carried out with various particle size with nominal diameters 45, 75 and 106${\mu}m$. The limiting oxygen concentration of dust cloud was determinated for the smaller size(45${\mu}m$) HPMC. Minimum ignition temperature of dust cloud was at 364$^{\circ}C$ for the concentration of 2.5g/L in the air and became higher with the increasing of nitrogen concentration. It was also found that the ignition didn't occur when the oxygen concentration was below 10%, and limiting oxygen concentration is at 11%.

Evolution of cometary dust particles to the inner solar system: Initial conditions, mutual collision and final sinks

  • Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.48.3-49
    • /
    • 2017
  • Interplanetary space of the solar system contains a large number of dust particles, referred to as Interplanetary Dust Particles (IDPs) cloud complex. They are observable through meteors and zodiacal lights. The relative contribution of possible sources to the IDPs cloud complex was an controversial topic, however, recent research (Yang & Ishiguro, 2015 and references therein) suggested a dominance of cometary origin. In this study, we numerically investigated the orbital evolution of cometary dust particles, with special concerns on different evolutionary tracks and its consequences according to initial orbits, size and particle shape. The effect of dust particle density and initial size-frequency distribution (SFD) were not decisive in total cloud complex mass and mass supply rate, when these physical quantities are confined by observed zodiacal light brightness and dust particle SFD at 1 au. We noticed that, if we assume the existence of fluffy aggregates discovered in the Earth's stratosphere and the coma of 67P/Churyumov-Gerasimenko, the required mass supply rate decreases significantly. We also found out that close encounters with planets (mostly Jupiter) are the dominating factor of the orbital evolution of dust particles, as the result, the lifetime of cometary dust particles are shorter than Poynting-Robertson lifetime (around 250 thousand years). As another consequence of severe close encounters, only a small fraction of cometary dust particles can be transferred into the orbit < 1 au. This effect is significant for large size particles of ${\beta}$ < 0.01. The exceptional cases are dust particles ejected from 2P/Encke and active asteroids. Because they rarely encounter with Jupiter, most dust particles ejected from those objects are governed by Poynting-Robertson effect and well transferred into the orbits of small semimajor axis. In consideration of the above effects, we directly estimated probability of mutual collisions between dust particles and concluded that mutual collisions in the IDPs cloud complex is mostly ignorable, except for the case of large sized particles from active asteroids.

  • PDF

Analysis of aerosol and cloud depolarization ratios measured by lidar (구름, 에어로솔의 라이다 계측 편광 소멸도 분석)

  • Park, Chan bong;Lee, Young Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.442-444
    • /
    • 2012
  • Depolarization characteristics of aerosol and cloud measured by dual wavelengths polarization lidar are examined. Ratio of depolarization ratio (RDR) between 1064 and 532nm are analyzed and compared with spherical aerosols and cloud. RDR of dust aerosols is exponentially decreased according to the increase of depolarization ratio at 532nm. The RDR of spherical aerosol is in the range of 1.5~6, dust aerosol is 0.98~4, and cloud is 0.7~1.77. Vertical distribution of dust aerosol and Relative Humidity (RH) are compared. In general, the RH in the dust layer are in the range of 30~60%. However, higher RH is frequently observed in the dust aerosols layer. In the condition of higher RH over 75%, the RDR of the dust aerosol are also increased to the range of 2~4.

  • PDF

A STUDY OF LYNDS 1251 DARK CLOUD: II. INFRARED PROPERTIES

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.107-117
    • /
    • 1996
  • We have studied the star forming activities and dust properties of Lynds 1251, a dark cloud located at relatively high galactic latitude. Eleven IRAS point sources identified toward Lynds 1251 are discussed. Estimate of stellar masses, and far-infrared lumnosities of the young stars associated with two prominent IRAS point sources imply that these are T-Tauri stars with masses smaller than $0.3 M_\bigodot$. The low dust temperature of 27 K and low ratio of FIR emission to hydrogen column density are probably due to the lack of internal heating sources. Presumably two low mass young stars do not have enough energy to heat up the dust and gas associated. The dust heating is dominated by the interstellar heating source, and the weaker interstellar radiation field can explain the exceptionally low dust temperatures found in Lynds 1251. The estimated dust mass of Lynds 1251 is just $\~1M_\bigodot$, or about 1/1000 of gas mass, which implies that there must be a substantial amount of colder dust. The infrared flux at $100{\mu}m$ is matching well with $^{13}CO$ peak temperature, while the $^{12}CO$ integrated intensity is matching with the boundary of dust emission. Overall, the dust properties of Lynds 1251 is similar to those of normal dark clouds even though it does have star forming activities.

  • PDF

P/2010 A2: Dynamical properties of dust and fragments

  • Kim, Yoonyoung;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2016
  • We revisited a recent dust emission observed at a main-belt asteroid P/2010 A2 in terms of dynamical properties of dust particles and large fragments. This is a continued research that we made a presentation at the Korean Astronomical Society 2016 Spring Meeting, but we have strengthened the dynamical analysis of the ejecta to afford the conclusive evidence for the enigmatic phenomenon. We thus constructed a model to reproduce the morphology of the dust cloud based on the dust dynamics, and succeeded in reproducing the observed morphologies in different epochs over several years. For further analysis, we reconstructed the proper motion of large fragments with respect to the dust emission source estimated from our dust model. We found that (i) the dust cloud morphologies and (ii) observed trajectories of fragments are reasonably explained only when we assumed that both were ejected from a position where no object was detected from any observations. This result suggests that the original body was shattered by an impact, leaving only debris into space. In this presentation, we will compare our results with impact laboratory studies and provide an impact interpretation of the P/2010 A2 activity.

  • PDF

MONTE-CARLO SIMULATION OF THE DUST SCATTERING (먼지 산란의 몬테카를로 시뮬레이션)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • We present a Monte-Carlo simulation code, which solves the problem of dust-scattering in interstellar dust clouds with arbitrary light source distribution and dust density structure, and calculate the surface brightness distribution. The method is very flexible and can be applied to radiative transfer problems occurring not only in a single dust cloud, but also in extragalactic dust environment. We compare, for performance test, the result of Monte-Carlo simulation with the well-known analytic approximation for a spherically symmetric homogeneous cloud. We find that the Code approximation gives a very accurate result.

Far-ultraviolet Observations of the Taurus-Perseus-Auriga Complex

  • Lim, Tae-Ho;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([154,180], [-28, -2]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It shows strong absorption in FUV toward the dense Taurus cloud while it does not in California cloud. It turned out that it is related to the relative location of each cloud and Perseus OB2 association. We also present some results of dust scattering simulation based on Monte Carlo Radiative Transfer technique (MCRT). Through this dust scattering simulation, we have derived the scattering parameter for this region, albedo(a)=$0.42^{+0.05}{_{-0.05}}$, asymmetry factor(g)=$0.47^{+0.11}{_{-0.27}}$. The optical parameters we obtained seem reasonable compared to the theoretical model values ~0.40 and ~0.65 for the albedo and the phase function though the phase function is rather small. Using the result of simulation, we figured out the geometries of each cloud in the complex region, especially their distances and thicknesses. Our predictions from the results are in good agreement with the previous studies related to the TPA complex. For example, the Taurus cloud is within ~200pc from the Sun and the Perseus seems to be multi-layered, at least two. The California cloud is more distant than the other cloud on average at ~350 pc and Auriga cloud seems to be between the Taurus cloud and the eastern end of the California cloud. We figured out that across the TPA complex region, there might be some correlation between the LSR velocity and the distance to each cloud in the complex.

  • PDF