• Title/Summary/Keyword: dust, extinction

Search Result 114, Processing Time 0.023 seconds

FUV Observations of The Taurus-Auriga-Perseus complex

  • Lim, Tae-Ho;Min, Kyung-Wook;Park, Jae-Woo;Kim, Il-Joong;Park, Sung-Joon;Lim, Yeo-Myung;Lee, Dae-Hee;Seon, Kwang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.32.5-32.5
    • /
    • 2010
  • We present the FUV continuum map of The Taurus-Auriga-Perseus complex, which is one of the largest local association of dark clouds. The map is well consistent with the dust extinction and the CO emission map of the T-P-A region. The region is divided into 3 sub-regions by diffuse FUV intensities and the spectra of each region imply that the radiation field due to the Per OB2-association can be a main source of the H2 fluorescent emission of the nearby cloud region. We used the PDR H2 model, named CLOUD, developed by van Dishoeck &Black for the sake of comparing our results to the H2 model.

  • PDF

Radiative pressure feedback in obscured quasars

  • Jun, Hyunsung;Assef, Roberto;Ricci, Claudio;Stern, Daniel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.36.4-36.4
    • /
    • 2019
  • Ricci et al. (2017, Nature, 549, 488) discovered a lack of high accretion rate, obscured Active Galactic Nuclei (AGN) in the hard X-ray selected Swift/BAT local AGN survey. This was interpreted as radiative pressure driven AGN feedback clearing its immediate vicinity composed of dusty gas (having an effectively low Eddington limit in the order of 0.01-0.1), and governing the level of nuclear obscuration. As we find Eddington-limited accretion and high extinction values among obscured, luminous AGN (quasars) however, it may be that the local X-ray AGN and the distant quasars undergo different feedback mechanisms in clearing their surroundings. In this study, we simply compare the obscuring column density and Eddington ratio values for quasars selected by various methods, including X-ray obscured, optically blue, infrared red/luminous, and submillimeter bright AGN. We find obscured quasars lying on the column density-Eddington ratio diagram previously unoccupied by Ricci et al., suggesting that radiative pressure is insufficient to clear its dusty structure at high luminosity, or that the dust in obscured quasars are more extended than the low luminosity counterparts to become fully transparent. We discuss alternative feedback scenarios that may be more relevant for obscured quasars.

  • PDF

Determination of the Lidar Ratio Using the GIST / ADEMRC Multi-wavelength Raman Lidar System at Anmyeon Island (GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에서의 라이다 비 연구)

  • Noh Young Min;Kim Young Min;Kim Young Joon;Choi Byoung Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Tropospheric aerosols are highly variant in time and space due to non-uniform source distribution and strong influence of meteorological conditions. Backscatter lidar measurement is useful to understand vertical distribution of aerosol. However, the backscatter lidar equation is undetermined due to its dependence on the two unknowns, extinction and backscattering coefficient. This dependence necessitates the exact value of the ratio between two parameters, that is, the lidar ratio. Also, Iidar ratio itself is useful optical parameter to understand properties of aerosols. Tropospheric aerosols were observed to understand variance of lidar ratio at Anmyeon island ($36.32^{/circ}N$, $126.19^{/circ}E$), Korea using a multi-wavelength raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea during measurement periods; March 15$\sim$April $16^{th}$, 2004 and May 24$\sim$ $8^{th}$ 2005. Extinction coefficient, backscattering coefficient, and lidar ratio were measured at 355 and 532 nm by the Raman method. Different types of aerosol layers were distinguished by the differences in the optical properties such as Angstrom exponent, and lidar ratio. The average value of lidar ratio during two observation periods was found to be $50.85\pm4.88$ sr at 355 nm and $52.43\pm15.15$ sr at 532 nm at 2004 and $57.94\pm10.29$ sr at 355 nm and $82.24\pm15.90$ sr at 532 nm at 2005. We conduct hysplit back-trajectory to know the pathway of airmass during the observation periods. We also calculate lidar ratio of different type of aerosol, urban, maritime, dust, continental aerosols using OPAC (Optical Properties of Aerosols and Clouds), Remote sensing of atmospheric aerosol using a multi-wavelengh lidar system with Raman channels is quite and powerful tool to characterize the optical propertises of troposheric aerosols.

miniTAO/ANIR Paα SURVEY OF LOCAL LIRGs

  • Tateuchi, Ken;Motohara, Kentaro;Konishi, Masahiro;Takahashi, Hidenori;Kato, Natsuko;Uchimoto, Yuka K.;Toshikawa, Koji;Ohsawa, Ryou;Kitagawa, Yutaro;Yoshii, Yuzuru;Doi, Mamoru;Kohno, Kotaro;Kawara, Kimiaki;Tanaka, Masuo;Miyata, Takashi;Tanabe, Toshihiko;Minezaki, Takeo;Sako, Shigeyuki;Morokuma, Tomoki;Tamura, Yoichi;Aoki, Tsutomu;Soyano, Takeo;Tarusawa, Kenfichi;Koshida, Shintaro;Kamizuka, Takafumi;Nakamura, Tomohiko;Asano, Kentaro;Uchiyama, Mizuho;Okada, Kazushi;Ita, Yoshifusa
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.297-298
    • /
    • 2012
  • ANIR (Atacama Near InfraRed camera) is a near infrared camera for the University of Tokyo Atacama 1m telescope, installed at the summit of Co. Chajnantor (5,640 m altitude) in northern Chile. The high altitude and extremely low water vapor (PWV = 0.5 mm) of the site enable us to perform observation of hydrogen $Pa{\alpha}$ emission line at $1.8751{\mu}m$. Since its first light observation in June 2009, we have been carrying out a $Pa{\alpha}$ narrow-band imaging survey of nearby luminous infrared galaxies (LIRGs), and have obtained $Pa{\alpha}$ for 38 nearby LIRGs listed in AKARI/FIS-PSC at the velocity of recession between 2,800 km/s and 8,100 km/s. LIRGs are affected by a large amount of dust extinction ($A_V$~ 3 mag), produced by their active star formation activities. Because $Pa{\alpha}$ is the strongest hydrogen recombination line in the infrared wavelength ranges, it is a good and direct tracer of dust-enshrouded star forming regions, and enables us to probe the star formation activities in LIRGs. We find that LIRGs have two star-forming modes. The origin of the two modes probably come from differences between merging stage and/or star-forming process.

EVOLUTION OF LUMINOUS INFRARED GALAXIES REVEALED BY NEAR-INFRARED MULTI-BAND IMAGING OF THEIR HOSTS

  • Oi, Nagisa;Imanishi, Masatoshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.301-303
    • /
    • 2012
  • We present the result of our near infrared J- (${\lambda}=1.25{\mu}m$), H- (${\lambda}=1.63{\mu}m$), and $K_s$-band (${\lambda}=2.14{\mu}m$) imaging of ultraluminous ($L_{IR}$ > $10^{12}L_{\odot}$) and luminous ($L_{IR}=10^{11-12}L_{\odot}$) infrared galaxies (ULIRGs and LIRGs), to investigate their relationship through properties of their host galaxies. We find that (1) for single-nucleus ULIRGs and LIRGs, their spheroidal host galaxies have similar properties, but ULIRGs display a substantially higher level of nuclear activity than LIRGs, suggesting that their infrared luminosity difference comes primarily from the different level of current nuclear activity. We infer that LIRGs and ULIRGs have similar progenitor galaxies, follow similar evolutionary processes, and may evolve into optically-selected QSOs. (2) Largely-separated multiple-nuclei ULIRGs have significantly brighter host galaxies than single-nucleus ULIRGs and LIRGs in $K_s$-band, indicating that multiple-nuclei ULIRGs have a bias towards mergers of intrinsically large progenitor galaxies, in order to produce high infrared luminosity ($L_{IR}$ > $10^{12}L_{\odot}$) even at the early merging stage. (3) We derive dust extinction of host galaxies of ULIRGs and LIRGs to be $A_V$ ~ 14 mag in the optical or equivalently $A_K$ ~ 0.8 mag in the near-infrared $K_s$-band, based on the comparison of host galaxy's luminosities in the J-, H-, and $K_s$-bands.

NEAR- TO MID-INFRARED SLIT SPECTROSCOPIC OBSERVATIONS OF THE UNIDENTIFIED INFRARED BANDS IN THE LARGE MAGELLANIC CLOUD

  • Mori, T.I.;Sakon, I.;Onaka, T.;Umehata, H.;Kaneda, H.;Ohsawa, R.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.209-212
    • /
    • 2012
  • We present the results of the near-infrared (NIR) to mid-infrared (MIR) slit spectroscopic observations of the diffuse emission toward nine positions in the nearby irregular galaxy Large Magellanic Cloud (LMC) with the Infrared Camera (IRC) on board AKARI. The unique characteristic of AKARI/IRC provides a great opportunity to analyze variations in the unidentified infrared (UIR) bands based on continuous spectra from 2.5 to $13.4{\mu}m$ of the same slit area. The observed variation of $I_{3.3}/I_{11.3}$ suggests destruction of small-sized UIR band carriers, polycyclic aromatic hydrocarbons (PAHs) in harsh environments. This result demonstrates that the UIR $3.3{\mu}m$ band provides us powerful information on the excitation conditions and/or the size distribution of PAHs, which is of importance for understanding the evolutionary process of hydrocarbon grains in the Universe. It also suggests a new diagnostic diagram of two band ratios, such as $I_{3.3}/I_{11.3}$ versus $I_{7.7}/I_{11.3}$, for the interstellar radiation conditions. We discuss on the applicability of the diagnostic diagram to other astronomical objects, comparing the LMC results with those observed in other galaxies such as NGC 6946, NGC 1313, and M51.

AKARI MID- TO FAR-INFRARED OBSERVATIONS OF DIFFUSE GALACTIC EMISSION

  • Sakon, I.;Onaka, T.;Mori, T.I.;Ohsawa, R.;Doi, Y.;Okada, Y.;Kaneda, H.;Ootsubo, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.213-216
    • /
    • 2012
  • We have collected dozens of mid-infrared spectra showing UIR bands from diffuse Galactic emitting regions with the AKARI's Infrared Camera (IRC) onboard AKARI, as part of the ISMGN Mission Program. The datasets cover various directions in the inner Galactic Plane ($|l|$ < 70 deg), in the outer Galactic Plane ($|l|$ > 70 deg), and in the off-Plane ($|b|$ > 2 deg). The variations in the UIR band ratios are examined in terms of the radiation environments judged from the far-infrared ($50-170{\mu}m$) spectral energy distribution (SED) made with AKARI/FIS All Sky Survey data at each slit position where mid-IR spectra were obtained. We have found that the band ratios of $6.2{\mu}m/11.2{\mu}m$ and $7.7{\mu}m/11.2{\mu}m$ toward the inner Galaxy are systematically higher than those toward the outer Galaxy and off the Galactic plane. Likely causes of the variations in properties of UIR bands in diffuse emission on a Galactic scale are discussed in this paper.

PROBING STAR FORMATION IN ULTRALUMINOUS INFRARED GALAXIES USING AKARI NEAR-INFRARED SPECTROSCOPY

  • Yano, Kenichi;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.189-191
    • /
    • 2017
  • We performed systematic observations of the H $\small{I}$ $Br{\alpha}$ line ($4.05{\mu}m$) in 51 nearby (z<0.3) ultraluminous infrared galaxies (ULIRGs), using AKARI near-infrared spectroscopy. The $Br{\alpha}$ line is predicted to be the brightest among the H ${\small{I}}$ recombination lines in ULIRGs with visual extinction higher than 15 mag. We detected the $Br{\alpha}$ line in 33 ULIRGs. In these galaxies, the relative contribution of starburst to the total infrared luminosity ($L_{IR}$) is estimated on the basis of the ratio of the $Br{\alpha}$ line luminosity ($L_{Br{\alpha}}$) to $L_{IR}$. The mean $L_{Br{\alpha}}/L_{IR}$ ratio in LINERs or Seyferts is significantly lower (~50%) than that in H $\small{II}$ galaxies. This result indicates that active galactic nuclei contribute significantly (~50%) to $L_{IR}$ in LINERs, as well as Seyferts. We also estimate the absolute contribution of starburst to $L_{IR}$ using the ratio of star formation rates (SFRs) derived from $L_{Br{\alpha}}$ ($SFR_{Br{\alpha}}$) and those needed to explain $L_{IR}$ ($SFR_{IR}$). The mean $SFR_{Br{\alpha}}/SFR_{IR}$ ratio is only 0.33 even in H $\small{II}$ galaxies, where starburst is supposed to dominate the luminosity. We attribute this apparently low $SFR_{Br{\alpha}}/SFR_{IR}$ ratio to the absorption of ionizing photons by dust within H $\small{II}$ regions.

The Arc Dispersion Properties by Switching of High Sensitivity Type RCD Contacts (고감도형 누전차단기 접점의 스위칭에 따른 아크 비산 특성)

  • Choi Chung-Seog;Kim Dong-Woo;Kim Young-Seok;Lee Ki-Yeon
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.63-68
    • /
    • 2005
  • In this study, the arc dispersion properties were analyzed according to switching of high sensitive type Residual Current Protective Device(RCD) contacts. Arc dispersion and ignition process was taken by high speed imaging system(HSIS). In this experiment, electric lamps(60 W) and heaters(950 W) were connected in parallel as loads. In case of normal RCD, it took about 2.3(ms) from the generation of arc to the extinction of uc. When arc was dispersed in normal RCD, it did not ignite cotton. Whereas, in case of RCD deteriorated by NaCl solution, the range of arc dispersion was wider and the arc lasted for 3.3[ms] more compared to normal RCD. And the arc ignited cotton. In order to prevent accidents caused by RCD, we should be careful of environmental factors, such as dust and humidity, and the parts of RCD should be used as incombustible materials.

MIRIS Paschen-α Galactic Plane Survey : Comparison with WISE catalog and IPHAS Hα data in Cepheus

  • Kim, Il-Joong;Pyo, Jeonghyun;Jeong, Woong-Seob;Kim, Min Gyu;Lee, Dukhang;Park, Won-Kee;Park, Sung-Joon;Moon, Bongkon;Park, Youngsik;Lee, Dae-Hee;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.39.3-39.3
    • /
    • 2017
  • To see scientific potential of MIRIS Paschen-${\alpha}$ ($Pa{\alpha}$) Galactic Plane Survey (MIPAPS), we have selected a portion, Galactic longitude from $+96^{\circ}$ to $116^{\circ}$, and inspected $Pa{\alpha}$ detections for 212 sources in WISE H II region catalog. We also list up $35Pa{\alpha}$ large features and $32Pa{\alpha}$ point-like blobs, which have not been cataloged in WISE catalog. For all the sources, we have performed the photometry of $Pa{\alpha}$ emission line, and obtained their $Pa{\alpha}$ intensities and $Pa{\alpha}$ fluxes. For the quantitative comparison, we also make the $H{\alpha}$ mosaic image of the same region by using IPHAS data which have been globally calibrated and released recently. Comparing MIPAPS $Pa{\alpha}$ fluxes with the IPHAS $H{\alpha}$ fluxes enables us to estimate dust extinction and spectral types of ionizing sources. We present the results for some sources.

  • PDF