• Title/Summary/Keyword: duration at sea

Search Result 105, Processing Time 0.024 seconds

Evidence of Vertical Mixing Caused by High Frequency Internal Waves along the Eastern Coast of Korea

  • Han, In-Seong;Lee, Ju;Jang, Lee-Hyun;Suh, Young-Sang;Seong, Ki-Tack
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Internal waves and internal tides occur frequently along the eastern coast of Korea. During the spring-tide period in April 2003, the East Korean Warm Current (EKWC) flowed near the Korean East Coast Farming Forecast System (KECFFS; a moored oceanographic measurement system), creating a strong thermocline at the intermediate layer. Weakened stratification and well-mixed water appeared frequently around the KECFFS, with duration of approximately 1 day. The results suggest the following scenario. Baroclinic motion related to the internal tide generated high frequency internal waves around the thermocline. The breaking of those waves then created turbulence around the thermocline. After well-mixed water appeared, a current component with perpendicular direction to the EKWC appeared within the inertial period. The change in stratification around the KECFFS locally broke the geostrophic balance as a transient state. This local vertical mixing formed an ageostrophic current within the inertial period.

Remote Acoustic Sensing Methods for Studies in Oceanology

  • Akulichev, Victor A.;Bezotvetnykh, Vladimir V.;Burenin, Alexander V.;Voytenko, Evgeny A.;Kamenev, Sergey I.;Morgunov, Yury N.;Polovinka, Yury A.;Strobykin, Dmitry S.
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • In this paper, the lines of investigation on a problem of the development of remote acoustic sensing methods in oceanology are formulated. This paper summarizes the results of investigations into the possibilities for monitoring temperature and flow fields in shallow seas. In the discussed experiments, the instrumentation being constituents of the complex for long-duration remote monitoring of marine medium climatic variability and that of the acoustic tomography of shallow sea dynamic processes is used. The acoustic instruments were located on the POI FEB RAS acousto-hydrophysical polygon (Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences) near the Gamov Peninsula. Acoustic receiving and transmitting systems operating with multiplex phase-manipulated signals (of M-codes) at frequency range 250-2500 Hz form the basis for this complex.

Quantitative Assessment of Coastal Groundwater Vulnerability to Seawater Intrusion using Density-dependent Groundwater Flow Model (분산형 해수침투 모델을 이용한 양적 지표 기반의 해안지하수 취약성 평가연구)

  • Chang, Sun Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.95-105
    • /
    • 2021
  • Extensive groundwater abstraction has been recognized as one of the major challenges in management of coastal groundwater. The purpose of this study was to assess potential changes of groundwater distribution of northeastern Jeju Island over 10-year duration, where brackish water have been actively developed. To quantitatively estimate the coastal groundwater resources, numerical simulations using three-dimensional finite-difference density-dependent flow models were performed to describe spatial distribution of the groundwater in the aquifer under various pumping and recharge scenarios. The simulation results showed different spatial distribution of freshwater, brackish, and saline groundwater at varying seawater concentration from 10 to 90%. Volumetric analysis was also performed using three-dimensional concentration distribution of groundwater to calculate the volume of fresh, brackish, and saline groundwater below sea level. Based on the volumetric analysis, a quantitative analysis of future seawater intrusion vulnerability was performed using the volume-based vulnerability index adopted from the existing analytical approaches. The result showed that decrease in recharge can exacerbate vulnerability of coastal groundwater resources by inducing broader saline area as well as increasing brackish water volume of unconfined aquifers.

Detoxification of PSP and relationship between PSP toxicity and Protogonyaulax sp. (마비성패류독의 제독방법 및 패류독성과 원인플랑크톤과의 관계에 관한 연구)

  • CHANG Dong-Suck;SHIN Il-Shik;KIM Ji-Hoe;PYUN Jae-hueung;CHOE Wi-Kung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.4
    • /
    • pp.177-188
    • /
    • 1989
  • The purpose of this study was to investigate the detoxifying effect on PSP-infested sea mussel, Mytilus edulis, by heating treatment and correlation between the PSP toxicity and the environmental conditions of shellfish culture area such as temperature, pH, salinity, density of Protogonyaulax sp. and concentration of inorganic nutrients such as $NH_4-N,\;NO_3-N,\;NO_2-N\;and\;PO_4-P$. This experiment was carried out at $Suj\u{o}ng$ in Masan, Yangdo in Jindong, $Hach\u{o}ng\;in\;K\u{o}jedo\;and\;Gamch\u{o}n$ bay in Pusan from February to June in $1987\~1989$. It was observed that the detection ratio and toxicity of PSP in sea mussel were different by the year even same collected area. The PSP was often detected when the temperature of sea water about $8.0\~14.0^{\circ}C$. Sometimes the PSP fox of sea mussel was closely related to density of Protogonyaulax sp. at $Gamch\u{o}n$ bay in Pusan from March to April in 1989, but no relationship was observed except above duration during the study period. The concentration of inorganic nutrients effects on the growth of Protogonyaulax sp., then effects of $NO_3-N$ was the strongest among them. When the PSP-infested sea mussel homogenate was heated at various temperature, the PSP toxicity was not changed significantly at below $70^{\circ}C$ for 60 min. but it was proper-tionaly decreased as the heating temperature was increased. For example, when the sea mussel homogenate was heated at $100^{\circ}C,\;121^{\circ}C$ for 10 min., the toxicity was decreased about $67\%\;and\;90\%$, respectively. On the other hand, when shellstock sea mussel contained PSP of $150{\mu}g/100g$ was boiled at $100^{\circ}C$ for 30 min. with tap water, the toxicity was not detected by mouse assay, but that of PSP of $5400{\mu}g/100g$ was reduced to $57{\mu}g/100g$ even after boiling for 120 min.

  • PDF

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.

Acoustic Doppler Current Profiler Bottom Tracking Survey of Flow Structures around Geumo Archipelago in the Southern Waters of Korea (ADCP bottom tracking에 의한 금오열도 주변의 해수유동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.589-600
    • /
    • 2019
  • In order to investigate the flow structures around Geumo archipelago on Southern Waters of Korea, water movements were measured for 25 hours during spring tide in May and neap tide in September 2002 using ADCP (Acoustic Doppler Current Profiler) attached to a running boat. Dominant directions of ebb and flood current at spring tide are SE-NW, representing the average flow rate of approximately 40cm/s in the surface layer. However because of the topographical reason, the direction and speed of the flow in the narrow waterway sea area around the northwest of Gae Island were different. There was no notable baroclinic component of tidal flow at spring tide. This indicates that the sea area has been actively engaged in vertical mixing due to island wake or eddy due to narrow waterways, shallow water depth and rapid flow rate around archipelago. At neap tide, dominant directions of tidal flows are SSE-NNW and the average flow rate in the surface layer is about 85 percent of the spring tide. The duration and intensity of the flow direction are shorter and less dominant than the spring tide. It is expected that asymmetrical tidal mixing will occur due to vertical velocity shear and horizontal eddies. From daily mean tidal flows obtained from the ADCP observation, it was found that the northwest of Gae Island have flows in NW~NE, the west of Geumo Island have the average currents of up to 21 cm/s WSW~SSW and counterclockwise circulation or eddy currents are formed in the west of Sori Island.

Effects of concentration and permeation time of cryoprotectants on fertilization and hatching rate in the unfertilized egg of the Pacific oyster Crassostrea gigas (동해방지제의 종류, 농도 및 침투시간이 굴 (Crassostrea gigas) 미수정란의 수정률과 부화율에 미치는 영향)

  • Kim, Ki Tae;Lim, Han Kyu
    • The Korean Journal of Malacology
    • /
    • v.31 no.3
    • /
    • pp.179-186
    • /
    • 2015
  • The Pacific oyster Crassostrea gigas oocytes were exposed to 4 cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG), methanol, or polyethylene glycol (PEG), each with 4 four concentrations (5, 10, 15, and 20%) and for 10, 20, 30 or 40 minutes for permeation. The oocytes were then fertilized, using normal sperm of the species. Fertilization and hatching rates were clearly influenced by cryoprotectant species and their concentration and permeation time. Overall, they decreased as concentrations and permeation time of cryoprotectants increased with optimum results at concentrations of 5-10% and a permeation time of 10 minutes. Larval abnormalities, a sign of the chemical damage, were a representative phenotype which was higher at a higher concentration and longer duration of the chemicals. In conclusion, best result was from 5% DMSO exposure for 10-20 minute permeation.

Development of a metal-halide lamp's electronic ballast (메탈핼라이드 집어등용 전자식 안정기 개발)

  • Park, Seong-Wook;Bae, Bong-Seong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.116-125
    • /
    • 2013
  • Jigging and angling fishery is prevalent in the East Sea of Korea and this fishery needs many lamps to attract the fish. And the fishing boat uses 24~47 ballasts by the vessel's tonnage to turn on the fishing lamp. A 3.5kW magnetic-type ballast being currently used at many fishing boats can drive two 1.5kW metal-halide lamps. Meanwhile, this ballast has large weight (25kg) and volume. Therefore it is one of reason for the over-consumption of energy and the fire, resulted from overheat and electrical short, occurs occasionally because the ballast is installed at narrow and hot engine room. In addition, most of magnetic ballast has several problems such as periodic condenser replacement, low energy efficiency and making lamp short life, etc. So it is necessary to improve or develop newly the electronic ballast, which has to be smaller, lighter and more efficient. An electronic ballast was designed for the fishing boat by considering duration and electromagnetic interference in the study. Its weight and volume are respectably 40% and 66% compared to current ballast on the basis of PCB. The metal-halide lamp's spectrum of the designed ballast was nearly same to that of the current ballast in the test of lighting. In particular, the light stability was improved and there isn't any radio interference. As mentioned above, it is expected that the developed electronic ballast can replace current magnetic ballast because of many advantages related to energy-saving.